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Abstract: The Goeppert–Mayer and Kramers–
Henneberger transformations are examined for bound 
charges placed in electromagnetic radiation in the non-
relativistic approximation. The consistent inclusion of the 
interaction with the radiation field provides the time evo-
lution of the wavefunction with both structural interac-
tion (which ensures the bound state) and electromagnetic 
interaction. It is shown that in a short time after switch-
ing on the high-intensity radiation the bound charges are 
set free. In these conditions, a statistical criterion is used 
to estimate the rate of atom ionization. The results cor-
respond to a sudden application of the electromagnetic 
interaction, in contrast with the well-known ionization 
probability obtained by quasi-classical tunneling through 
classically unavailable non-stationary states, or other 
equivalent methods, where the interaction is introduced 
adiabatically. For low-intensity radiation the charges 
oscillate and emit higher-order harmonics, the charge 
configuration is re-arranged and the process is resumed. 
Tunneling ionization may appear in these circumstances. 
Extension of the approach to other applications involving 
radiation-induced charge emission from bound states is 
discussed, like ionization of molecules, atomic clusters 
or proton emission from atomic nuclei. Also, results for a 
static electric field are included.
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Radiation; Fragmentation; Ionization.
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The investigation of the laser-matter interaction has been 
focused since the beginning on the radiation-induced 
atom ionization [1, 2]. Originally, the transitions from 
atomic non-stationary states have been approached by 

time-dependent perturbation theory. Keldysh [3] noticed 
that the presence of the radiation implies a quasi-classical 
tunneling through states which are not allowed by the 
classical dynamics (including imaginary time tunneling 
[4]). Later, it was realised [5] that the radiation-dressed 
states play an important role in the ionization process 
through the Kramers–Henneberger transformation [6–8]. 
Similarly, the ionization rate in static electric field was 
computed in classical works [9–11], either by quantum 
transitions or by tunneling through the potential barrier 
generated by the field. These calculations assume an adi-
abatic introduction of the electromagnetic interaction, 
which allows the use of atomic states [12]. The dynam-
ics of the electrons in the presence of the radiation field 
is neglected in these approaches, which results in well-
known ionization probabilities proportional to e−const/E, 
where E is the (low) strength of the electric field [13–16] 
(a result valid also for static fields [4]). In current experi-
ments envisaging atom ionization, especially in high-
intensity electromagnetic radiation, the interaction occurs 
suddenly in the focal region of the laser beam. In this 
case, the atomic states are wiped out and time evolution 
of the wavefunction is needed. On a sudden application 
of the interaction, both in static and time-dependent elec-
tromagnetic field, the particle energy is not determined. 
The need of a time-evolving picture of radiation-induced 
atom ionization has often been emphasised [17–19]. We 
present here an investigation into the time-evolution of 
bound states of charges for a sudden application of high-
intensity electromagnetic interaction.

First, we show that the consistent inclusion of the 
interaction with the radiation field by means of the unitary 
transformations of the Goeppert–Mayer and Kramers–
Henneberger type offers the opportunity to follow the time 
evolution of the wavefunction with both structural inter-
action (which is responsible for the charge bound state) 
and electromagnetic interaction. Second, it is shown that 
in high-intensity radiation, after a short lapse of time since 
its application, the well-known radiation-dressed interac-
tion resulting from the Kramers–Henneberger transforma-
tions vanishes, setting the charges free. Using a statistical 
criterion, we derive the ionization rate, which differs from 
the known results obtained by introducing the interac-
tion adiabatically. The effect of low-intensity radiation is 
that of an adiabatic perturbation. During its slow action, 
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the electrons oscillate among stationary states, leading 
to well-known multi-photon absorption and production 
of high-order electromagnetic harmonics. The process 
implies a periodic re-arrangement of the charge configu-
ration. Tunneling ionization may appear in this case. We 
apply the results of this new context to the ionization 
of atoms, assuming, for convenience, (non-relativistic) 
single-electron states in atomic mean-field. The exten-
sion of the results to multiply-charged ions, ionization of 
large molecules, atomic clusters, or proton emission from 
atomic nuclei is discussed.

We assume a charge q with mass m in the potential 
V(r) in the presence of an electric field E, introduced at 
time t = 0. In the non-relativistic approximation the dipole 
hamiltonian is

	
2

0 0
1, ( ),

2dH H q H p V
m

= − = +rE r
�

(1)

where r denotes the charge position and p is the charge 
momentum. We assume that the electric field E is a radi-
ation field. In the non-relativistic approximation we may 
limit ourselves to its time dependence. Consequently, 
we assume a typical component of the electric field of 
the form E = E0sin(ωt + α), where ω is the radiation fre-
quency (linear polarization), t denotes the time and α is 
an initial phase. We consider the associated Schrodinger 
equation iħ∂ψ/∂t = Hdψ and introduce the unitary 
transformation

	
1

1 00

1, d [cos( ) cos ],
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(2)

where we recognise the vector potential 
A = (c/ω)E0[cos(ωt + α) − cosα] (E = −(1/c)∂A/∂t), ħ being 
Planck’s constant and c the speed of light in vacuum). We 
can write S1 = −(q/ħc)rA. The transformation given by (2) 
leads to /q c→ = −p p p A�  and the standard non-relativ-
istic hamiltonian
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with the associated Schrodinger equation / .di t Hφ φ∂ ∂ = ��  
The transformation given by (2) is the well-known known 
Goeppert–Mayer transformation [20].

Let us write

	

2
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(4)

and continue with the unitary transformations
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These transformations lead to the Schrodinger 
equation
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(6)

with the radiation-dressed potential
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We note that the interaction with the radiation is 
applied suddenly at t = 0, where ψ(t = 0) = φ(t = 0) = χ(t = 0) 
and the electromagnetic interaction vanishes at t = 0 in 
the standard non-relativistic hamiltonian given by (4) 
and in ( ).V r�  This establishes the equivalence of the three 
hamiltonians [(1), (4) and (6)] and the consistent inclu-
sion of the interaction with the radiation field (see, for 
instance, [21–23]). The unitary transformations given by 
S2,3 are the well-known Kramers–Henneberger transfor-
mations, including the radiation-dressed potential ( ).V r�  
[5–8]. The wavefunction ψ = exp(iS1)exp(iS2)exp(iS3)χ 
given by the above formulae is known sometimes as the 
non-relativistic Volkov wavefunction [18]. Its expansion in 
a temporal Fourier series indicates the presence of multi-
ple “photons” with frequencies nħω, where n = 0, 1, 2, …. 
integer [15, 24, 25]. The Kramers–Henneberger transfor-
mation has been used recently for estimating the energy 
levels of the hydrogen atom and an electron in helium 
atom in laser fields, or including magnetic fields [26–28].

We emphasise that in the above calculations we 
assume that the electric field E = E0sin(ωt + α) is applied 
suddenly at t = 0, it being zero for t < 0. We envisage ioni-
zation experiments which proceed by placing a collection 
of atoms, molecules, atomic nuclei, atomic clusters, etc in 
the focal region of an (optical-) laser beam, the laser pulse 
being fired upon them. Strictly speaking, if there is not 
energy loss, and, especially, for strong fields, we may esti-
mate the time of setting up the radiation upon a particle as 
Δt = a/c, where a is the dimension of the particle. For atoms 
Δt  3 × 10−19 s (a = aH  0.53Å, where aH is the Bohr radius). 
This is a very short time in comparison with other relevant 
times. The perturbation implied by such a sudden appli-
cation of the interaction generates an energy uncertainty 
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ΔE  ħ/Δt, which is ΔE  1 keV for atoms. The atomic station-
ary states are wiped out by such a perturbation (irrespec-
tive of the interaction strength), at least the high-energy 
ones. In the subsequent duration of time, the assembly of 
bound charges may follow two distinct regimes, depend-
ing on the field strength. For weak fields, the perturbed 
charges accommodate themselves in the field in a long 
time, which amounts to view the interaction as being 
adiabatically introduced. During this time, the charges 
radiate, re-arrange themselves (the mean-field potential 
changes) and tunneling ionization may appear. This is 
the standard perturbation-theoretical approach to the 
interaction of the bound charges with the electromagnetic 
radiation. For strong fields, there is no time for charges to 
accomodate in the interaction field, a circumstance which 
precludes the application of usual treatments of the ioniza-
tion by tunneling, perturbation theory, or other equivalent 
approaches. We may say that the transient regime gener-
ated by the sudden application of a high-intensity interac-
tion dominates, in comparison with the (quasi-) stationary 
regime. The quantitative criterion which separates the two 
regimes described here is given below.

Also, we note that the phase α in the expression of the 
electric field accounts for the spatial position of the charge 
in the assembly of bound-state particles. This parameter 
may be treated as a statistical parameter. It is also worth 
noting that E(t = 0) ≠ 0, while the vector potential A = (c/ω) 
E0[cos(ωt + α) − cosα] is zero for t = 0 (A(t = 0) = 0). Also, 
we note that we may start directly with the standard 
non-relativistic hamiltonian given by (3), instead of the 
dipole hamiltonian given by (1), because the particles are 
immersed in the radiation field. However, we must pay 
attention to including the initial-time condition, such that 
A(t = 0) = 0. This is the meaning of the term “consistent” 
used for characterizing the present procedure of treating 
the electromagnetic interaction.

We proceed now to apply these results to the ioniza-
tion of atoms. We assume that in the absence of the radia-
tion field the potential V(r) is the mean-field potential 
which generates bound atomic single-electron states. For 
convenience, we consider the center of mass of the bound-
state assembly fixed at the origin. Let us assume that the 
electric field E is directed along the z-axis. Then, (7) gives
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where V1 = ∂V/∂z, V2 = ∂2V/∂z2, ... and
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We can see that the potential V�  at the position of the 
charge is the original potential V at coordinate z + ζ(t), as 
if the charge is displaced in the potential V by ζ(t) along 
the z-direction. It is convenient to introduce the parameter 
ξ = |q| E0/mω2a, where a denotes a length of the order of the 
dimension of the atom (in its ground-state); we asssume 
a  aH = ħ2/me2, where aH is the Bohr radius, q = −e being 
the electron charge.

For ξ  1 (low-intensity radiation) the electron charge 
oscillates and emits higher-order harmonics, due to the 
oscillations brought about by ζ(t) in the z-coordinate. 
During this process the charge is reconfigured, the time 
of charge re-arrangement being given approximately by 
ta = ħ/Δε, where Δε is the perturbation energy generated 
by the radiation field via the potential .V�  During the 
time ta the mean-field potential V changes and its radi-
ation-dressing process is resumed periodically. This is a 
well-known process [29–32]. It is worth noting that the 
re-arrangement time ta is long for low radiation fields, 
such that we may consider the electromagnetic radiation 
as being adiabatically applied after each reconfiguration 
process. Standard tunneling ionization may appear in 
this case. The case ξ = |q| E0/mω2a  1 corresponds to the 
case γ = ω(2ml0)1/2/ |q| E0  1 in [3], where I0 is the ioniza-
tion potential. Keldysh showed that the tunneling (which 
proceeds by imaginary time) is equivalent in this case 
with multiple-photon absorption, especially for high 
frequencies [3].

For ξ  1 (high-intensity radiation) the displacement 
ζ(t) may get rapidly larger than the atom size, and the elec-
trons are set free. The electrons are left with their kinetic 
energy only. Consequently, we may expect the peripheral 
electrons be ejected from the atom. The attractive poten-
tial of the resulting ion suffers the same radiation-dressing 
reduction process and it is surpassed by the kinetic energy 
of the ejected electrons (note that the positively-charged 
ion moves in opposite direction than the electron).

The parameter ξ can also be written as ξ = η(λ/a), 
where η = |q| A0/mc2, A0 = cE0/ω, λ being the radiation 
wavelength (divided by 2π). In order to preserve the non-
relativistic approximation we should have η  1. The con-
ditions η < 1 and ξ > 1 are satisfied for radiation intensity I in 
the (approximate) range 1011 < I < 1018 (W/cm2) for electrons 
in atoms (a = 10−8 cm) and optical radiation (ω = 1015 s−1, 
λ  10−4 cm); these intensities correspond approximately to 
an electric field in the range 104 < E0 < 108 (esu) (we use the 
notation esu for the electric field unit statvolt/cm as well 
as for the charge unit statcoulumb, m = 10−27 g for the elec-
tron mass, q = −e = 4.8 × 10−10 esu for the electron charge, 
ħ = 10−27 erg · s for Planck’s constant and c = 3 × 1010 cm/s 
for the speed of light in vacuum). Even for moderate laser 
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intensities the parameter ξ is large (ξ ≤ 103 for I = 1018 W/
cm2). Under these circumstances we may use ωt  1 in (9), 
which gives the duration τ for setting the electron free as

	
2

| ( ) | / | cos sin( ) sin |

1 ( ) |sin | 1.
2

aζ τ ξ ωτ α ωτ α α

ξ ωτ α

= − + +

=�
�

(10)

We can see that the displacement of the electrons ζ(t) 
at the initial moment (ωt  1) is in the opposite direction 
with respect to the electric field, as expected. Depending 
on the sign of sin α, this displacement is either positive 
or negative. We assume the phase α randomly distributed 

and take the mean value |sin | 2 / ;α π=  we use ξ(ωτ)2/π = 1 
as a statistical criterion for ionization.

Let us consider a heavy atom with the nucleus charge 
Ze. According to the Thomas–Fermi model for heavy 
atoms (Z  1) the electrons (in the ground state) are con-
centrated mainly at a distance of the order aH/Z1/3 from the 
nucleus. Therefore, we may estimate the release time τ 
from ξ(ωτ)2/π = 1 − 1/Z1/3. For a heavy ion with one electron 
and the nuclear charge Ze the radius of the electron orbit 
is of the order aH/Z and the time τ can be estimated from 
ξ(ωτ)2/π = 1 − 1/Z. In general, for a heavy ion with charge ne, 
n  Z, the charge localization distance b can be estimated 
from Ze2/b  ħ2(Z − n)2/3/mb2, which gives b  aH(Z − n)2/3/Z. 
In all these cases, for large Z, we may take approximately 
the condition ξ(ωτ)2/π  1 for estimating the release time τ. 
Similarly, the same condition is valid for light atoms.

Under these circumstances, the statistical criterion of 
ionization makes no distinction between successive ioni-
zation acts or multiple ionization, the very short release 
time being the same for each electron. However, we must 
be aware that after each process of electron ejection the 
electronic core suffers a reconfiguration (re-arrangement) 
process and the potential V(r) is modified. This is the 
well-known process of core “shake-up” (which may imply 
also a core excitation) [31–34]. As a consequence of this 
reconfiguration process, the condition of setting the elec-
trons free, derived from (8), is not valid anymore. A new 
bound state is formed and a new transformation process 
begins for the modified potential V(r). It is important to 
note that for electrons ejected from high-energy states the 
re-arrangement time is short, such that the fast ionization 
may continue. This would be a succesive (or multiple) ion-
ization. But when the ionization process begins to affect 
the electrons lying deep in energy, the re-arrangement 
time becomes longer and we may consider that the elec-
tromagnetic interaction is applied adiabatically for them. 
In these conditions, the ionization rate for deep-lying elec-
trons becomes much smaller. A very rough estimate of the 

maximum number of electrons nc ejected by the fast-ioni-
zation process is provided by the Thomas–Fermi model of 
heavy atoms, where the highest-energy state has a spatial 
(quasi-) degeneracy of the order Z2/3. We may take, as a 
rough estimate, nc  Z2/3. We note that the elimination of 
these electrons reduces appreciably the energy (which is 
of the order ħ2Z2/3/ma2), such that the re-arrangement time 
begins to increase appreciably.

According to the discussion above, the fast-ionization 
rate is

	
0

1 / | | / .q E maξ πω π
τ

=�
�

(11)

The decay law of atom population N is N = N0e−t/τ, 
where N0 is the initial number of atoms. For high-intensity 
radiation the rate given by (11) is appreciably enhanced 
in comparison with the tunneling-ionization rate. We can 
see from (11) that the uncertainty in energy brought about 
by the ionization is 2 2

0/ ( / ) | | .ma q E a∆ε τ= � � �  The 

mechanical work |q | E0a done by the field to extract the 
electron is of the same order of magnitude as the locali-
zation energy ħ2/ma2 for atomic fields E0  106 esu (inten-
sity I  1014 W/cm2), as expected. In this case ξ = (ħ2/ma2)2/
(ħω)2 = 102 and 1/τ = [(ħ2/ma2)/π(ħω)]ω = (10/π)ω (it is 
assumed that the laser pulse duration is longer than ω−1 
and the time τ). We can see that the emission time τ is 
shorter in this case than the period (2π/ω) of the radia-
tion. In this limit, the very fast ionization rate is 20 times 
higher than the radiation frequency. For E > E0 the process 
of interaction with the radiation is dominated by the fast-
rate ionization. For lower fields the ionization process 
slows down appreciably as the mechanical work |q| E0a 
becomes smaller than εb (>0), where −εb is the binding 
energy of the electron (ionization potential).

We can get a critical value E0c of the electric field for 
the transition from the low- to high-intensity regime from 
ξ = 1. This condition gives E0c  2 × 104 esu for electrons, 
corresponding to a radiation intensity I  1011 W/cm2. We 
can see from (11) that the ionization rate increases with 
increasing field strength. In the intermediate-intensity 
range corresponding to ξ  1 the interplay between highly-
excited states and ionization may generate a transient 
regime of atomic stabilization, with a lower ionization rate 
[35]. In this region the ionization rate 1/τ can be estimated 
by solving the equation |ζ(τ)|/a = 1 for τ. It is easy to see 
that the solution τ(E) exhibits oscillations with respect to 
the field strength E0.

It is worth estimating the spatial distribution of the 
ejected electrons. From (9) and (10) the average momentum 
given to an electron by the electric field during time τ is
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1 | | sin ,
2e z zm m q E aζ π α= = − ⋅p e e�
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where ez is the unit vector along the z-direction. In the 
absence of the radiation the momentum 2p mε=  cor-
responding to the highest energy ε = ħ2Z2/3/ma2 in heavy 
atoms makes an angle β with the direction ez, being uni-
formly distributed in space. From the total momentum 
P = p + pe we get

	
2

coscos ,
1 2 cos

B
B B

β
θ

β

−=
− + �

(13)

where θ is the angle made by P with the direction of the 
electric field (ez) and 0| | /8 sin .B q E aπ ε α=  For our 
range of electric fields the parameter B is smaller than 
unity, such that we may use a series expansion in (13) in 
powers of B. After averaging over phase α we get

	
2 0| |

cos cos 1 (4cos 1) .
8
q E aπ

θ β β
ε

 
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We can see that the electric field brings only a small 
(anisotropic) contribution to the uniform distribution of 
the ejected electrons. Although high, the field E0 is not as 
high as to dominate the kinetic energy of the electrons in 
heavy atoms.

We note that the above calculations are done for lin-
early polarised radiation. It is easy to see that similar cal-
culations can be done for a general polarization.

An interesting question arises here related to very 
high-intensity radiation in the so-called relativistic 
regime, where η  1. As long as the bound state of the 
charge subsists, the motion is, practically, non-relativistic. 
This means that the electromagnetic momentum p is suf-
ficiently large to reduce to a large extent the contribution 
qA/c, such that the velocity is small. The above non-rel-
ativistic formalism may be applied. However, this situa-
tion lasts a very short time (since ξ  1), the charge being 
rapidly injected in the high-intensity radiation, where it is 
accelerated up to relativistic velocities [36–38].

We include here similar calculations for a static 
uniform electric field E, which may be viewed as being 
derived from a vector potential A = −cEt. The wavefunc-
tion is

	

2 2 3 2

6 2 ,
iq E t iqtiqt

m me e eψ χ
− −

=
EpEr
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(15)

where χ satisfies the Schrodinger equation
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with the transformed potential given by
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2( ) ( ).
qt grad
mV e V=
E

r r�
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It is easy to see that the ionization rate is 
1/τ = (|q| E/2ma)1/2. It coincides practically with the ioniza-
tion rate in oscillating fields (11).

Finally, we note that the displacement occurring in 
the radiation-dressed interaction (8) is given, in general, 
by

	

1

1 2 2
0 0

( ) d d ( ).
ttqt t t t

m
= ∫ ∫ Eζ

�
(18)

By using this equation, we can estimate the ioniza-
tion rate for a general time-dependence of the electric 
field in the laser pulse. For example, for a very short δ-like 
pulse E = TE0δ(t − t0) occurring at t0 with a width T we get 
a ionization rate 1/τ  qTE0/ma. This equation differs from 

the 0E -dependence given above. Since strong fields are 
obtained usually with very short pulses, the tendency 
towards the linear dependence on the field indicated here 
may be more suitable for analyzing experimental data in 
this case [39].

In conclusion, we may say that, by means of suit-
able unitary transformations of the Goeppert–Mayer and 
Kramers–Henneberger type, the interaction of bound 
charges with the electromagnetic radiation can be consist-
ently taken into account for a sudden application of the 
electromagnetic interaction. It is shown that the radiation 
dressing of the structural interaction (which is responsible 
of the charge bound state) favours, in this case, the dis-
sociation of the bound state (ionization) in high-intensity 
radiation. The atom ionization rate is estimated by using 
a statistical criterion. The new picture of atomic ionization 
described in this paper implies an explicit time evolution of 
the charge wavefunction with both structural and radiation 
interaction. In a short time τ after turning-on the high-inten-
sity radiation the bound charges are set, practically, free.

The approach presented here can be extended to the 
ionization of molecules [40, 41] or atomic clusters [42], 
or to proton emission from atomic nuclei [43], or even 
ion emission from molecules (atomic clusters), as well as 
nuclear alpha decay. For electrons in atoms the conditions 
of ionization and non-relativistic approximation imply a 
radiation intensity in the range 1011 < I < 1018 (W/cm2), for 
atomic dimensions of the order a = 10−8 cm and optical 
radiation with frequency ω = 1015 s−1, as shown above. 
Similar conditions lead to 107 < I < 1023 (W/cm2) for proton 
emission from atomic nuclei (nuclear dimension 10−13 cm) 
and 1017 < I/A2 < 1023 (W/cm2) for ion emission from mol-
ecules (dimension 10−18 cm), where A is the mass number 
of the ion.
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