On the Parametrization of Complex
Hadamard Matrices

P. Dita
Institute of Physics and Nuclear Engineering,
P.O. Box MG6, Bucharest, Romania

Abstract

Complex Hadamard matrices are important in the mathematical
structure of the quantum information theory being an essential tool
for the construction of bases of unitary operators used in the theory.
In this paper we provide a procedure for the parametrization of the
complex Hadamard matrices for an arbitrary integer n starting from
our previous results on parametrization of unitary matrices. More
precisely we obtain a set of (n —2)? equations whose solutions give all
the complex Hadamard matrices of size n.

Recently the mathematical structure of the quantum information theory was
better understood by establishing a one-to-one correspondence between quan-
tum teleportation schemes, dense coding schemes, orthogonal bases of maxi-
mally entangled vectors, bases of unitary operators and unitary depolarizers
by showing that given any object of any one of the above types one can con-
struct any object of each of these types by using a precise procedure. See [13]
for details. The construction procedure will be efficient only to the extent
that the unitary bases can be generated and the construction of these bases
makes explicit use of the complex Hadamard matrices and the Latin squares.
The aim of this paper is to provide a procedure for the parametrisation of
the complex Hadamard matrices for an arbitrary integer n. More precisely
we will obtain a set of (n — 2)? equations whose solutions will give all the
complex Hadamard matrices of size n. Complex n-dimensional Hadamard
matrices are unitary n x n matrices whose entries have modulus 1/y/n.
The term Hadamard matriz has its root in the Hadamard’s paper [9] where
he gave the solution to the question of the maximum possible absolute value
of the determinant of a complex n x n matrix whose entries are bounded by
some constant, which, without loss of generality, can be taken equal to one.
Hadamard shown that the maximum is attained by unitary matrices whose
entries have the same modulus and he asked the question if the maximum
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can also be attained by orthogonal matrices. These last matrices have come
to be known as Hadamard matrices in its honor and have many applications
in combinatorics, coding theory, orthogonal designs, quantum information
theory, etc., and a good reference about the obtained results is [1].

The first complex Hadamard matrices were found by Sylvester [10]. He
observed that if we denote by a;, « = 0,1,...,n — 1 the solutions of the
equation ™ — 1 = 0 for a prime n then the Vandermonde matrix

1 1 | I |
1 1 a ad ap!
1 apy a2, -+ a7

is unitary and Hadamard. In the same paper Sylvester found a method to
obtain a Hadamard matrix of size mn if one knows two Hadamard matrices
of order m and respectively n by taking their Kronecker product. Soon after
the publication of the paper by Hadamard the interest was mainly on the real
Hadamard matrices such that the Sylvester contribution fell into oblivion and
the complex Hadamard matrices have been again reinvented by Turyn [11] in
a particular case, i.e. matrices whose entries are & 1, £ 4 where i = /—1

The parametrisation of complex Hadamard matrices is a special case of
a more general problem: that of reconstructing the phases of a unitary ma-
trix from the knowledge of the moduli of its entries, problem which was a
fashionable one at the end of eighties of the last century in the high energy
physics community [2]-[3], [4]-[5]. An existence theorem as well as an esti-
mation for the number of solutions was obtained by us in [7]. The particle
physicists abandoned the problem when they realised realized that for n > 4
there exists a continuum of solutions, i.e. solutions depending on arbitrary
phases, result that was considered uninteresting from their point of view.

Complex n-dimensional Hadamard matrices being unitary matrices whose
entries have modulus 1/4/n, the natural class of looking for complex Hadamard
matrices is the unitary group U(n).

Because in any group the product of two arbitrary elements is again an
element of the group there is a freedom in choosing the ”building” blocks
to be used in a definite application. For example the high energy physicists
working on CP violation problem in the framework of the standard model
realized that for the Cabibbo-Kobayashi-Maskawa unitary mass matrix there
is a natural constraint, namely the mass matrix is invariant under a rephasing
transformation, i.e. a transformation of the form

ai; — €@t (o, 8; arbitrary modulo 27)

where a;;, 7,7 = 1,...,n are the entries of the matrix A,. Similarly in
the case of a complex Hadamard matrix the multiplication of a row and/or
a column by an arbitrary phase factor does not change its properties and
consequently we can remove the phases of a row and column taken arbitrarily.



Taking into account that property we can write
An =d, An dn—1

where ffn is a matrix with all the elements of the first row and the first column
positive numbers and d,, = (€**,...,e*") and d,_; = (1,e"¥n+1, ... ei¥m-1)
are two diagonal phase matrices. In the following we will consider that A, =
A,, i.e. A, will be a matrix with positive entries in the first row and the first
column.

Secondly we can permute any rows and/or columns and get an equivalent
unitary matrix. This procedure can be seen as a multiplication of A,, at left
and/or right by an arbitrary finite number of permutation unitary matrices
P, i # j, 1,7 =1,...,n, whose all diagonal entries but a;; and a;; are equal
to unmity, a; = a;; =0, a;; = a;; = 1, © # j and all the other entries vanish.
Both the diagonal phase and permutation matrices generate subgroups of the
unitary U(n) group; so we may consider them as gauge subgroups, i.e. any
element of U(n) is defined modulo the action of a finite number of the above
transformation which has as consequence a simplication of the calculations.

Besides for Hadamard matrices we will not distinguish between A, and
its complex conjugated matrix A,, the complex conjugation being equivalent
to the sign change of all phases ¢; — —¢; entering the parametrisation.
More generally we shall consider equivalent two matrices whose phases can
be obtained each other by an arbitrary non-singular linear transformation
with constant coefficients.

To be efficient we need a parametrisation of unitary matrices. In our
previous works [6]-[7] we have shown that starting from a partitioning of the

matrix A, in blocks
A B
w=(2 )

and using some results from the contractions theory we arrive at the following
form for A, when n =2m

w=i(e s )
"2\ C —CA*B
which is unitary by construction. A, B and C' have order m x m. In general
the above matrix will not be Hadamard even when A, B and C are as the
simplest example shows; this happens only when either C' = A or B = A.
Since the second case is obtained by transposing the matrix of the first one,
as long as B and C' are arbitrary we will consider only the matrix

1 (A B

sl ) W
which will be the elementary two-dimensional array that will be used in
construction of more complicated arrays of Hadamard matrices.



In the following we suppose that A and B are complex Hadamard matrices
of size m each one depending on p > 0 respectively ¢ > 0 free phases, i.e.
Eq.(1) is a complex Hadamard matrix of size 2m. They are normalized such
that AA* = BB* = I,, where I,, denotes the unit matrix of size m. Now
we make use of Hadamard’s trick [9] to get a Hadamard matrix depending
on p+ g+ m — 1 arbitrary phases. Indeed we can multiply B at left by the
diagonal matrix d = (1,€'%!,... e'¥m-1) without modifying the Hadamard
property. In this way Hadamard obtained a continuum of solutions for the
case n = 4. We denote B; = d - B and then the matrix

s 5) 8

will be unitary Hadamard depending on p + ¢ + m — 1 parameters. From
Eq.(1) we obtain in general two non-equivalent 2 m x 2 m Hadamard matrices
by taking B = A, and B = A*; if B is not equivalent to A we obtain others
two different matrices, one being Eq.(2) and the second one is given by B; —
By = d- B* where * denotes the adjoint. The above procedure can be iterated
by taking the matrix Eq.(1) as a new A block obtaining a Hadamard matrix

of the form
A B C D

A B C -D
A B -C -D (3)
A -B -C D

which is a 4 m-dimensional array similar to Williamson array, and so on. In
contradistinction to the Williamson array the A, B, C, D blocks satisfy no
supplementary conditions, excepting their unitarity, for obtaining Hadamard
matrices, and the elementary array Eq.(1) is different from that appearing
in the constructions of Williamson type that has the form

il %)

Moreover the above array is not unitary when A and B are, this happens
only when A = BA*B. As an application of the formula (3) we consider the
following case: ay; = @19 = a91 = —a9s = b1y = by = c11 = 19 = dyy = dig =
1/\/§ and bgy = —byy = eis/\/i, Co1 = —Cg2 = eit/\/i, do1 = —dgp = €iu/\/§
where the notation is self-explanatory, and we obtain an eight-dimensional
Hadamard matrix depending on three arbitrary phases s, t, u.

When A = B Eq.(1) can be written as

B3 2)-5(2)es

where € = —1, i.e. the first factor is the Sylvester Vandermonde matrix of
the second roots of unity, and ® is the ordinary Kronecker product, AQ B =
[a;; B]; of course the first factor can be any complex Hadamard matrix of

1
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order m. Now we want to define a new product the aim being a more general
construction of Hadamard matrices. Let M and N be two matrices of the
same order m whose elements are matrices M;; of order n and respectively
N;; of order p. The new product denoted by ® is given as

Q=MN
which is a matrix of order mnp, where

k=m

Qij = Y My ® Ny

k=1

We will use here the above formula only in the following case: M = m;;
where m;; are complex scalars, not matrices and N is an arbitrary diagonal
matrix N = (Ny1,- -+, Nyum) where Nj; are matrices of order p obtaining

muNi - - M1 Nym
Q= . .. (4)

mllel vt mmmNmm
If the matrices M and N;;, 2 = 1,...,m are Hadamard so will be the matrix
(4) and this form is the most general Williamson-type array we have obtained.
If in the above relation we take mi; = My = Moy = —Mgy = 1/\/§ and

N1 = A and Ny = B then (4) reduces to Eq.(1). If now m;; are the same

as above and
1 1 1 1

1171 1 -1 -1
N = 211 -1 —es e’
1 -1 et —ett
is the complex four-dimensional Hadamard matrix and

1 0 0 0 1 1 1 1
Noy— 1] 0 € 0 0 11 -1 -1

2Z=9510 0 €+ 0 1 -1 —e% ¢
0 0 0 e 1 -1 €% —eW

we obtain an eight-dimensional matrix depending now on five arbitrary phases
s,t,u, v,y instead of three as in the preceding example obtained by using the
Williamson-type array (3).

The most convenient for our purposes is the parametrisation of unitary
matrices under the form of a product of n diagonal matrices containing phases
interlaced with n —1 orthogonal matrices each one generated by a real vector
v € R™ See [8] for details. We consider that this form will be more ap-
propriate to design and implement software packages for solving the moduli
equations for arbitrary n and allow us to find explicitly these equations.



In the following we use the standard form of Hadamard matrices, i.e. the
entries of the first row and of the first column are positive and equal 1/y/n
and obtain that the first simplest entries of the unitary matrix have the form

1 n—2 iay
a22:_(n_1)\/ﬁ_n_1008b16 -
1 I 2 cos by e’ - sinby ...cos by_q e'—2
Qpo = —
(n=1vn Vn=1\,/(n-1)(n-2) Jin—k+2)(n—k+1)
K .
nn—ik—i—lsmbl ...8inbg_scosby_q ew"“—1> , k=3,....,n—1

1 cos by et n—3 )
Qg3 = — + + 4/ sin by cos ¢; e+ etc.
2 (n—=1)v/n n—1 n—1 ' !

By Latin letters we denoted the angles and by Greek letters the phases which
parametrize the given matrix.

The matrix elements get more complicated when going from the upper
left corner to right bottom corner. The entries ass,a3s and aoz lead, for
example, to the following moduli equations

2
(n—2) cos’b; + —=cos by cosa; — 1 =0

NG

=3 cos by (COS 9 _ cos by cos(a — 042)>

n
n—1 \/ﬁ

—sin by) = 0 (5)

sin by ((n — 3)sinb; cos® by + 2

-3
sin by ((n — 3)sinb; cos’e; + 2 n COS ¢ (—M

Jn + cos by cos 51)

—sin bl) =0

and so on. The number of equations (5) equals (n — 2)2.
It is easily seen that other equations contain as factors sin bs, . .., sin b,_o,
sincy,...,etc.. Thus a particular solution can be obtained when

sinb; =0
which implies b = 0,7, and from the first equation (5) we get

L(n=3)yn

L=
2



It is easily seen that the above equation has solution only for n = 2, 3, 4; for
n > 5 the factor sin by will be omitted from Egs.(5) because then b; # 0, .
When n = 2 we obtain a; = m/4 50 agy = —1/v/2. If n = 3, then oy = 7/2
and from the first Eq.5 one gets
1 1 am
= —e'3, etc.

;
Qyg = ——— — —

22 2\/5 92 \/g

The case n = 4 leads to a; = 7 which gives

eila2+pB1)

1
Qg2 = —Q23 = —0A32 = 5 and az3 = — 9

After the substitution oy + 5 = ¢ one finds the standard complex form of
the 4 x 4 matrix found by Hadamard. To view what is the origin of the phase
g + (1 we have to look at the moduli equations. They have the form

2 cos?by + cos by cosa; —1 =0

sin by (cosay — 2 cosby cos(a; — ag)) =0
sin by (2 cosby cosPBy — cos(ay + B1)) =0
cos 2b; cos(ay — ag) cos B + cos by cos(ag + B1) + sin(ay — ag) sinf; =0

and we see that that the above system splits into two cases. In the first
one when sin b; = 0 the rank of the system is two which explains the above
dependence of a3z on two phases and in the second case when sin b; # 0 the
rank is three and the dependence is only on one arbitrary phase. However in
this case there is no final difference between the two cases. The solution of
the above system is obtained directly but for n > 5 the problem is difficult
and needs more powerful techniques. Particular solutions can be obtained
rather easily, e.g. for n = 6 we get

1 1 1 1 1 1
1 -1 1 - —1 1
1 1 & -1 et —et
Vel 1 =i —e® -1 i e
1 —i e i =1 —e
1 i —i —et et -1

matrix that depends on an arbitrary phase. However the problem of solving
the system of Egs.(5) in full generality is a difficult problem and we will
consider it elsewhere.
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