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Abstract

A quantum master equation with microscopic coefficients is proposed to
describe the dissipative dynamics of a Fermi system coupled with an envi-
ronment of particles through a two-body potential. In comparison with other
master equations existing in literature, this equation satisfies the conditions of
a dynamical detailed balance, leading to Pauli master equations for the diago-
nal elements of the density matrix, and to damped Bloch-Feynman equations
for the non-diagonal ones during the whole evolution of the system. The new
equation is particularized for a harmonic oscillator coupled with the electro-
magnetic field through electric-dipole interaction and is compared with the
well-known equation of Sandulescu and Scutaru.
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Quantum master equations represent an essential tool for describing the interplay be-
tween dissipative and field-induced processes in a matter-field system. Recently, vivid discu-
tions have been devoted to this subject [1-12], but generally acccepting that the dissipative
dynamics of an N-level system is correctly described by a time-dependent semigroup of
evolution operators [13-16]. These operators satisfy Lindblad’s master equation [14]
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of the system operators s,,, is valid only for a weak dissipative coupling. In comparison with
other master equations taking into account a strong dissipative coupling [17,18], it has the
advantage of entirely preserving the quantum-mechanical properties of the density matrix
(hermiticity, trace-class and positivity) during the whole evolution of the system. However,
Eq. (1) is only a general form with (N? —1)? free complex parameters for an N-level system
that has only N? — 1 degrees of freedom. General conditions for describing the dynamics
of a physical system in accordance with the detailed balance principle have recently been
derived [2]. The connection of this axiomatic equation with the previous phenomenological
descriptions has been realized by Sandulescu and Scutaru [19]. Thus, for a unidimensional
system with the coordinate x and the momentum p, one may define the dissipative operators
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that lead to a quantum master equation
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with a friction coefficient
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and three diffusion coefficients
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. From these expressions, one obtains fundamental constraints of the dissipative coefficients:
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It is remarkable that Eq. (4), originally obtained only from the condition of the probability
normalization [14], satisfies also Heisenberg’s uncertainty relation Az - Ap > fi/2 during the
whole evolution of the system [19]. It is suggested that for Eq. (4), originally derived for
deep inelastic processes (heavy-ion collisions), any values of the friction/diffusion coefficients
satisfying the relations (7) are in principle allowed. Some interesting effects of quantum
optics [20] and nuclear physics [21-23], predicted in this framework, have experimental
evidence.

Considering an equilibrium asymptotic solution according to Boltzmann’s distribution,
for a harmonic oscillator with the frequency wy this equation takes a form
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depending only on two parameters: the decay rate v = 2\ and temperature 7. It is also
remarkable that this equation, derived only from the asymptotic condition, satisfies also the
condition of a detailed balance during the whole evolution of the system. Really, from (8),
one obtains equations for matrix elements
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that, for the diagonal ones, take a form
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with an asymptotic solution corresponding to Boltzmann’s distribution
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We notice that, according to this equation, the population variation of an arbitrary level n
is the result of the population transitions from the two neighbouring levels n+1,n — 1. This
corresponds to a dipole coupling of the harmonic oscillator: only the dipole moments of a
harmonic oscilator have the property of being non-zero only between two successive levels.
Really, the master equation (8) has beeen reobtained for a harmonic oscillator coupled with
the electromagnetic field in an independent oscillator model [24], that corresponds to an
electric-dipole interaction - the field variation with the oscillator coordinate is not taken
into account.



However, although Egs. (10) are in agreement with a principle of detailed balance in a
sense recently discussed [2-4], Eqgs. (9) for the non-diagonal matrix elements describe non-
physical couplings of a transition m <> n with the neighbouring transitions m —1 < n —1
and m 4+ 1 <> n + 1. The possibility of such couplings is discuused in [25], as representing
a coherence transfer between equidistant levels - in this case, all the transitions between
equidistant levels should be coupled. This is not the case here, where the couplings of
the transitions between the neighbouring levels appear merely by using Lindblad’s master
equation with only two operators x and p - these couplings are present for an arbitrary
unidimensional potential [26,19]: the derivation of Eq. (4) is exclusively based on the
general relations (3), without any additional assumption about the potential. Here the
essential problem is that one may not expect to describe precisely the dynamics of an N-
level system with only two operators z and p, even though this system has the simpler form
of a harmonic oscillator.

This description with only two operators has been used to obtain a master equation in
agreement with the quantum-mechanical principles, without increasing too much the number
of the free parameters introduced through Lindblad’s axiomatic formalism [19]. However,
as it was previously shown by Ford, Lewis and O’Connell [3,24], the preservation of the
quantum-mechanical conditions is possible also in a constructive approach [27], where the
dissipative parameters can be effectively calculated. Thus, for a system of fermions with
the creation-destruction operators ¢ — ¢; and the Hamiltonian H, one obtains a master
equation of the form [28-30)]

©o(t) = —11H, o)) + X N ([ es(t) cf el + e e pD)ctel), (12)

4]
depending on N? — 1 coefficients with the expressions
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for a dissipative environment of Y# bosons. In this expressions, V', V¥ are dissipative two-
body potentials, g5 (¢a), 95 (€5), 95 (€a), 95 (€5) are densities of the environment states, and
fE(ea), f5 (€8), f2(€a), 5 (€5) are occupation probabilities of these states. In this descrip-
tion, a transition |j) — |7) of a system particle is correlated with a transition |3) — |a) of an
environment particle. When the environment is a blackbody electromagnetic field coupled
with the system through a dipole moment 7;;, we obtain the dissipative coefficients [30]:
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(From the quantum master equation (12) one obtains equations of matrix elements
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that, for the diagonal matrix elements, lead to master equations of Pauli’s form
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and, for the non-diagonal matrix elements, take the form of the damped Bloch-Feynman
equations [31]
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We notice that Egs. (18) do not contain any dissipative couplings between different transition
elements as p,, (t) with pp,_1,-1(t) O ppy1n11(t)), such as Egs. (9) do. Such couplings are
not revealed in the most studies of quantum optics [31-35].

With the matrix elements
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the quantum master equation (12) with the coefficients (15) can particularized for a harmonic
oscillator in a blackbody radiation field

& plt)= —1H, p(0)] + (21)

hw? n+1
taoyrts S g (e enp (D), i) + [efan, plt)cf enn]) +

1
(14 Sy ) (eiienplt), el ena] + e s p(O)c ea) }

In comparison with Eq. (8), the new equation (21) describes transitions between any two
successive levels of a harmonic oscillator with dipole coupling and, besides, parametrically
depends only on temperature. The corresponding Bloch equations
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take the same form as (9) only for the diagonal matrix elements, while for the non-diagonal
matrix elements the couplings of p,,,, (t) with p,—1,,-1(¢) and py, 41,541 () are no more present.
In this formalism, couplings of the transitions between the equidistant levels of a harmonic
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oscillator [25] could be taken into account only as higher-order terms in the weak-coupling
expansion of the dissipative dynamics [24].

As a conclusion, we have obtained a quantum master equation with transition operators
¢ ¢;, and microscopic coefficients depending on matrix elements, densities of the environment
states, and occupation probabilities of these states. This equation describes the dynamics
of an N-level system of fermions in agreement with the principle of a dynamical detailed
balance: (1) Pauli master equations for populations, (2) damped Bloch-Feynman equations
for polarizations.

We discussed this equation in the context of other master equations describing the time-
evolution of a system ia accordance with the quantum-mechanical principles. For a harmonic
oscillator coupled with the electromagnetic field, we obtained a master equation with N —1
transition operators between successive levels. Although the old equation in x and p satisfies
the detailed balance condition (1) for the diagonal matrix elements, it fails for the non-
diagonal matrix elements, including non-physical couplings between these elements. These
couplings appear as an approximation effect, due to the utilization of only two operators x
and p for the N? — 1 operators of an N-level system. The operators z and p, simultaneously
including all the transition operators, do not enable the separation of the most probable
resonant particle-particle couplings.

In this approach, we obtained a master equation in the second-order approximation that,
describing single-particle transitions, is valid only for a weak dissipative coupling. A stronger
dissipative coupling can be taken into acount in a higher-order approximation, describing
correlated transitions of fermions.
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