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Abstract

The g-symmetrized Harper-equation [P. B. Wiegmann and V. A. Zabrodin,
Phys. Rev. Lett. 72, 1890 (1994)] is generalized by accounting for arbi-
trary values of the anisotropy parameter A. This parameter discriminates
between metallic (A < 1) and insulator (A > 1) phases. Assuming that
the wavefunction is described in terms of Laurent series, we succeeded
to establish reasonable extrapolations of energy polynomials towards con-
tinuous values of the commensurability parameter, now for arbitrary A-
values.

1 Introduction
The g-symmetrized Harper-equation
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has received much interest [1, 2, 3]. This equation serves to the middle band
description of Bloch electrons on a 2D lattice threaded by a transversal and

homogeneous magnetic field B = (0,0, B). One has

q = exp (ih"/2) , (2)

and A* = 273, where (3 is a commesurability parameter expressing the number
of flux quanta per unit cell. Accordingly 3 = ®/®,, where ® = BS,, S| = a®
and ®; = h/e. Here one deals with a square lattice with the spacing “a”, but
other kinds of lattices, like triangular or hexagonal ones, can also be considered.
We shall also choose (-values like 8 = P/Q, where P and @ are mutually
prime integers. In this case the g-parameter becomes a root of unity like ¢*% =
1. Under such conditions proofs have been given that Eq. (1) exhibits the
symmetry of the quantum group sl; (2) [1]. However, there is the possibility
to account for a further parameter, namely the anisotropy parameter A, which
characterizes from the very beginning the original form of the (dimensionless)
energy dispersion law for a 2D square lattice:



Ejisp (?) =cosf; + Acosb, , 3)

where 0; = k; a (j = 1,2) are the pertinent Brillouin phases. The anisotropy
parameter referred to above discriminates between insulator (A > 1) and metal-
lic (A < 1) phases [4]. This amounts to apply the minimal substitution (see
also Ref. [5]) to Eq. (3), now by choosing the gauge [6]

4= (17 2 @1 tar + aga) | (4)

such that @y = —ap = —1/2 and §; = 6, = w/2. In general, a such procedure is
reminiscent to the “chiral” gauge mentioned before [7], but explicit steps [6] are
necessary for a better understanding. In this context we shall analyze the A # 1-
generalization of Eq. (1) by using this time a Laurent-series representation for
the wavefunction [8]. We shall then use this opportunity to derive energy-
polynomials exhibiting a reasonable dependence on a continuous extrapolation
of the commensurability parameter like #* € [0,27]. It is understood that
such extrapolations are useful for further studies concerning thermodynamic
properties.

2 Preliminaries and notations

The generalization of Eq. (1) for arbitrary values of the A-parameter is given
by

i (% + qu> b (gz) —i (2 + %) Y (q'2) = B (2) . (5)

This is produced by Egs. (A2)-(A8) in Ref. [6], now by choosing an arbitrary
A-parameter instead of A = 1. Our main task is to derive a ()-degree energy-
dependent polynomial, say P(@) (E;q,A), which should generate the middle
band energies in terms of the roots of the algebraic-equation

PQ (B;q,A) =0, (6)

such that ¢?? = 1. Of course, for a fixed Q-parameter, one has a certain number,
say Ny(Q), of coprime realizations P; of the P-parameter. Some few examples
are Ns(3) = Ny(4) = Ny(6) = 1, but Ng(5) = Ns(8) = Ng(10) = 2 ete. It
is also understood that inserting selected h*-values such as i* = 27P;/Q into
P@ (E;q,A) yields a number of N,(Q) distinct polynomial realizations like
IBISQ) (E;A), where k = 1,2,...,Ns(Q). The energy bands are then produced
by the inequalities [9]

—2-2AQ < P@Q (E;q,A) <2+ 2A9 (7)

in which the equality-signs are responsible for the band-edges. The 13,5@—
polynomials can be established by resorting to the transfer matrix approach



[10, 11, 12], to the method of the secular-equation [9, 13], or to the Bethe-
ansatz approach [1]. Choosing A = 1, proofs have been given that the @ roots
of ﬁng) (E;1) = 0 fulfil the energy-reflection symmetry [14]. This property is
a consequence of the sl4(2)-symmetry, which means that —F is an energy-root
if E does it. Moreover, such polynomials fulfil the Bender-Dunne symmetry
[15], too. This amounts to consider that the wavefunction itself is the generat-

ing function of IS,SQ) (E;1)-polynomials referred to above. Furthermore, energy

IBISQ) (E; A)-polynomials for which A is an arbitrary positive parameter have
also been considered [9, 16]. In addition, explicit results concerning such poly-
nomials have been written down recently for ) = 1—8 [17] by using the transfer
matrix approach.

3 Applying Laurent series

Now we are ready to derive the continuous extrapolation of the energy-polynomial
ie. P(Q (E;q,A), by using Laurent-series. Limiting realizations of such poly-
nomials have been discussed before for A = 1 [6], but explicit results concerning
“discretized” ]s,gQ) (E; A)-polynomials are also available [17], as mentioned be-
fore. It is clear that P(@ (E; ¢, A)-polynomials have to be established so as
to reproduce both P(Q) (E;q,1)- and ISISQ) (E; A)-limits. On the other hand
continuous extrapolations can also be derived by resorting to other methods
referred to previously, namely to the secular equation or to the transfer matrix.
However, we have to realize, excepting selected h}-points, that such extrapola-
tions are not at all identical. Upon further clarification, we shall then proceed by
deriving the Laurent-series alternative to the continuous extrapolation, which
represents by itself a nontrivial result.
Inserting the Laurent-series

+oo
W)= Y ", (7
n=-—oo
into Eq. (5) then gives the three-term recurrence relation
42 _ A A2 — 1
. q . q
ECn = ch-i-lan + ZCn_lT - (8)

Of course, integrating Eq. (5) along a closed contour in the complex plane
centered at z = 0 yields the condition

i(1—A)e+ 2072 (A—¢°) =Ec_q, (9)

by virtue of Eq. (7), which reproduces precisely the n = —1 form of Eq. (8).
In general, we can then proceed choosing ¢y = 0 or ¢_; = 0, thereby preserving
the correct A = 1-limit. However, this choice works in terms of real g-values,
so that it will be hereafter ignored.



Proceeding via

C 1= 0 ) (]‘0)

we shall begin by considering that n > 0, in which case

One would then obtain

en= ()" ][ =z B (12

7=0
where R(™ (E;q, A) is a polynomial of degree “n” in E satisfying the three-term
recurrence relation

R™ = ER" U 4 R("2(AT,, 5, —1—A?), (13)

where
q 4 + _—. ( )

Now n > 1, such that RC-1) =0 and R = 1.
On the other hand one has

no—1
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C ng =Cnp = (_7’) ° (_1) ° ]:1_[1 m[’( 0-2) ’ (15)

for n < —2, where ng = |n| > 2. This time L(m~2) = L("0—2) (E;q, A) is an
energy polynomial of degree “ng — 2” obeying the recurrence relation
L) = prio=b 4 [(n0=2) [ADy,, —1 - A?] , (16)

such that L(-1) = 0 and L = 1.

After having been arrived at this stage we have to look for an eigenvalue
condition enabling us to establish the energy polynomial in terms of Eq. (6),
such that ¢?? = 1. A such condition is given by

~ expim (Q + 1)
co = TCQ , (17)

which results by virtue of a more careful analysis of recurrence relations. This
means in turn that the energy polynomial one looks for is given by

P@ (B;q,A) = RD (B;q,A) — (1 - A’ L (B;q,A) ,  (18)

which shows that P(@) can be established in a well defined manner in terms of
R@ and L(@-?). Some few explicit examples are



P (B;,8) = F, (19)
P (Bjq,A) =E2—2(A>+1) + A(2+Ty) , (20)
and

PO (E;q,A)=E[E* -3 (A*+1) + A(T2 + T4 +2)] . (21)

The underlying R™-and L(™-polynomials are given by

RV = E, (22)
R® =F2 A2 _14AD,, (23)
R® =E[E?-2(A2+1) + ATy +Ty)] , (24)

and
V=g, (25)
L® =E> 4+ ATy —1- A% (26)
L® = B[E*—2(A?+1) + ATy +T5)] , (27)

respectively. Other cases can be treated in a similar manner.

One realizes that energy reflection symmetry is preserved if A # 1, too. In
contradistinction, the Bender-Dunne symmetry ceases to be valid, but Eq. (17)
can be viewed as a generalized version of this one.

4 Conclusions

In this paper we succeeded to establish a tractable Laurent-series version of the
P (E;q, A)-polynomial. This polynomial has the meaning of a well defined
generalization, which also means that previous results are able to be reproduced
as a limiting cases. Such results are able to be combined with recent A # 1-
generalizations concerning the density of states [17]. Putting together results
just mentioned above opens the way for updated studies of thermodynamic
properties, but transport properties can also be accounted for. In the latter
case correlations between spectral and transport properties have to be invoked,
too.
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