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Abstract

We review some applications of Riemannian submersions in phy-
sics. We describe a compactification scheme for the Kaluza-Klein the-
ory triggered by a scalar sector in the form of a non-linear sigma model.
Another application refers to the Kaluza-Klein monopole which was
obtained by embedding the Taub-NUT gravitational instanton into
five-dimensional Kaluza-Klein theory.
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1 Introduction

Many results on the Riemannian submersions are relevant in various ar-
eas of mathematical physics as Kaluza-Klein theories, Yang-Mills equations,
strings, supergravity. Interest in higher dimensional theories has been ignited
once again in recent years due largely to the discovery that the underlying
symmetry of the fundamental interactions is geometrical, local and gauged.

A current trend in modern physics is the search for a theory which pro-
vides a unification of gravity with the other fundamental forces of nature.
One of the early possibilities for such a unification was suggested by Kaluza
[1] and later expanded upon by Klein [2]. It was shown within a five dimen-
sional extension of Einstein’s theory of general relativity how both gravity
and electromagnetism could be treated on a similar footing. Both interactions
were described as part of the five dimensional metric. The fifth coordinate
was made invisible through a ”cylindrical condition”: it was assumed that
in the fifth direction, the world curled up into a cylinder of very small radius
(10733 cm, Planck’s length).

A natural generalization of the original Kaluza-Klein idea which incorpo-
rates non-Abelian gauge fields is to consider a higher than five dimensional
theory in which the gauge fields become part of the metric in the same way
as the electromagnetic field did in Kaluza’s theory.

In the next Section we describe a compactification scheme for the Kaluza-
Klein theory triggered by a scalar sector in the form of a non-linear sigma
model.

The last Section is devoted to the Kaluza-Klein monopole in connection
with the Hopf maps. In physics, the Hopf maps represent systems with non-
trivial topological properties, e.g. the Z5 kink or sine-Gordon soliton, U(1)
magnetic monopole or vortex in a superconducting sheet, SU(2) instanton,
etc. Other physical realizations of the Hopf maps are possible.

After a brief presentation of the formalism of the magnetic charges, the
Dirac monopole is described in terms of Hopf maps. Finally the Kaluza-
Klein monopole is constructed by embedding the Taub-NUT gravitational
instanton into five-dimensional Kaluza-Klein theory. Let us note also that the
same object has re-emerged in the study of monopole scattering. In the long-
distance limit, neglecting radiation, the relative motion of two monopoles is
described by the geodesics of the Taub-NUT space [3, 4].



2 Kaluza-Klein theories and Riemannian
submersions

2.1 Kaluza-Klein ansatz

In the modern Kaluza-Klein theories one starts with the hypothesis that
space-time has (4 + m) dimensions. The extra m spatial dimensions are
static and curled up into a compact manifold of unobservable small size,
typically of the order of the Planck length. It is not assumed that space-
time is of the form M* x M™ where M* is the Minkowski space and M™
is a compact space. Rather, such spaces should correspond to ground state
solutions. Physical fields are then introduced as fluctuations around these
ground state solutions.

In a large class of physically interesting models in (4 + m) dimensions,
the compactification of the extra m dimensions are produced spontaneously
by the non-trivial vacuum configuration of an antisymmetric tensor field. It
is almost common to these models to get a huge cosmological constant for
the space-time if the extra dimensions are Planck-sized.

Another mechanism for space-time compactification was proposed by
Omero and Percacci [5] and Gell-Mann and Zwiebach [6]. Their mechanism
uses a scalar sector in the form of a non-linear sigma model to trigger the
compactification. The compactified space becomes isomorphic to the man-
ifold in which the scalar fields take values and the four dimensional space
has no cosmological term at the classical level. However, all symmetries in
the extra dimensions are broken by the scalars so one would have to resort
to solitons or bound states for the massless gauge bosons or put them in by
hand.

In a few recent papers [7, 8, 9, 10] it was investigated the possibility to
extend the model, assuming that the internal m-dimensional space can be
larger than the manifold in which the fields take values. The general solution
of the model can be expressed in terms of harmonic maps [11, 12] satisfying
Einstein equations. It was shown that a very general class of solutions is
given by Riemannian submersions from the extra dimensional space onto the
space in which the scalar fields take values. Investigating the isometries of
the metric of the extra m-dimensional space we found that the gauge fields
associated with the vertical Killing vectors are massless.



2.2 Generalized non-linear sigma model in curved
space

The model we shall discuss consists of Einstein gravity in (4+m) dimensions
coupled to a nonlinear sigma model [5, 6] :

1 R gY 0d? 9d°
5=3 /M (—5 + ﬁ”ab(q’)ﬁw) dv (1)

where dv is the volume element of the oriented (pseudo-)Riemannian mani-
fold M**™ with the metric g;; and scalar curvature R. We parametrize (4+m)
dimensional space-time M**™ by local coordinates z* = (z#, yP) with the in-
dices taking the values 7,7 =1,2,.....44+m; p=10,1,2,3; p=5,6,.....,4+m.
The scalar field ®*(z) are thought of as coordinates of a n-dimensional com-
pact space B with metric h,,. Latin letter from the beginning of the alphabet
(a,b,c,...) will take the values 5,6, ...,4 +n and A\? is a constant giving the
strength of the self-coupling of the scalar fields.

The action (1) contains two parts. The first term is the usual gravitational
action without a cosmological term. The second term is related to the energy
of the map ® between the manifold M**™ and B:

B@®) = /M e®)dy 2)

where the energy density is

1 1, 0D 0P
= — * = — Y B —
e(®) = STr(h) = 59" ha (3)

and ®*h is the pull back of the metric A by the map ®.
Varying the action with respect to ¢g” we obtain the Einstein equation

1
Sij — 5 1gi = 2Ty (4)
with the energy-momentum tensor
1 1,

We remark that the energy-momentum tensor (5) is (up to the coupling
constant \?) the stress-energy tensor of the map @ : (M**™ g) — (B, h)
11, 12]:
0P 9B° 0®® Ob°

L 6
52F 0% M g (©)

(Ss)ij = §gklhab
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From equations (4) and (5) we can extract the scalar curvature

2 099"

= — - gY
R=5ha g 529 (7)

such that the Einstein equations become

2, 0009
Si‘ = Slab—x7 7 - 8
TN 0 92 (®)
The map @ is called harmonic if it is an extremal of the energy integral
E(®) (2). The corresponding Euler-Lagrange equations are the equations of
the harmonic maps [11, 12]:

7(®)* = g (V(d®));; =0 (9)

where 7(®) is the tension field of the map ®.
The stress-energy tensor Sg has divergence:

divSe = — < 7(®),dd > (10)

and consequently if ® is harmonic, then Se is conservative (i.e. divSe = 0).
On the other hand Sg is obviously conservative, from equation (4), since
the Einstein field tensor is divergence free

1
(Sij — ERgij);i =0 (11)

as a consequence of Bianchi’s second identity.

We shall use this fact in conjunction with equation (10) to come to the
conclusion that ® is harmonic if the map is a differentiable submersion almost
everywhere |7, 8, 9, 10].

With this observation the study of the coupled equations (8) and (9) is
reduced to the search of submersions ® : M**™ — B satisfying the Einstein
equation (8), while equation (9) is automatically verified. Probably there are
solutions of the system of equations (8) and (9) which are not submersions,
but the rank of them is not maximal. The class of solutions given by Rie-
mannian submersions is quite general enough and presents a large physical
interest.

In order to recover the solutions from references [5, 6], let us consider a
submersion ® : M**t™ — B. For any p € M**t™ there is a local coordinate
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system (2*) and a local coordinate system around ®(p) € B such that the
submersion @ is given by the equations

% (z) =y*,a=5,6,...,44+n. (12)

Assuming that ® does not depend on the coordinates z*,pu = 0,1,2,3
and choosing m = n (the dimension of the extra space and the dimension of
the manifold B are the same) we get precisely the solutions from references
5, 6].

Using the parametrization (12) we can deduce from (8) some properties
of the Ricci tensor S;;. In the above local charts we have

2

Si' = ﬁhab&nébj,a,b: 5,6,...,4+7’L (13)
and the other components of S;; vanish.

This means that for the background metric g,, we can take any solution

of the Einstein equations in vacuum without a cosmological term
Suw=0,u,v=0,1,2,3. (14)

If m > n, equation (13) also implies the vanishing of some components
of the Ricci tensor in the extra space. Therefore the theory admits a M* x
M™ background where the four dimensional space-time can be taken flat
(Minkowski) and has no cosmological term at the classical level. The extra
space M™ roll up to form the manifold B which we choose to be compact.

2.3 Gauge fields and Killing vectors

As it was observed in [5, 6] the model admits a ”background” solution
M*™ = M* x M™ where M* is a flat (Minkowski) space and the sigma
field ® represents an identity map from the extra space M™ to the space
B of dimensions m = n. In general the extra space M™ rolls up to form
the manifold B which we choose to be compact. In what follows we shall
assume that the submersion ® : M**™ — B is independent on the space-
time coordinates z*(u = 0,1, 2, 3). Moreover we shall suppose that we know
a "background” metric g¥(i,j = 1,2,...4 + m) solution of equation (2). As
usual in the standard Kaluza-Klein theory, the spin-1 gauge bosons arise



from the expansion of the metric tensor ¢¥/ around the ”background” metric
g7 [13]:

9"°(2)=79"(2) + A”a(x)Aﬁ(:c)Xg(y)Xg(y) + ...
r,s=>5,6,....,4+m (15)

where X, is a set of Killing vectors on the manifold M™ and the gauge fields
A% (z) appear in conjunction with them. Including the fluctuations (15) into
the action (1), we shall get an additional term representing the interaction
between the gauge fields A, and the scalar fields ®¢ :

! 93" 9
a0 pa B . T s o=
o | @A) do [ XX GG de (1)

where dv; and dv, are the volume elements for the manifolds M* and M™
respectively. In general such a term is not zero, which means that the gauge
fields acquire masses. This is the main drawback of the previous solutions
[5, 6] since there are no massless gauge bosons in the theory.

In what follows we shall investigate the possibility to generate massless
gauge fields. For this purpose we shall use an extra dimensional space larger
than the space in which the scalar fields take values.

Indeed from equation (16) the necessary condition in order that a Killing
vector X, of M™ yields a massless gauge boson is [7]

Xo®*=0 for a=5,6,...,44+m. (17)
Writing a vector field X, of M™ in a local chart

4+m a

Xo= Y X2 (18)

5

we get that a vector field vanishes on the submersion map, equation (17), if
it is vertical

4+m 8
X, = Xr—, 19
2 ooy o

that is X, is tangent to the fibres of the submersion.
We recall that for each ¢ € B, the fibre ®7'(g) is a submanifold of M™
of dimension m — n. As a final remark, we mention that in references [5, 6]
m = n, the fibres are discrete sets and there are no vertical Killing vectors.
Some explicit constructions of the submersion ® : M™ — B with vertical
Killing vectors in order to get massless gauge bosons are presented in [8, 9].
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3 Kaluza-Klein monopole

3.1 The duality of electricity and magnetism

In what follows we shall review briefly the formalism of the magnetic charges
which was first formulated by Dirac [14] over 70 years ago. Their existence
has been under active experimental investigation ever since.

We start from classical electromagnetism in Minkowski space which is
described by Maxwell’s equations in terms of the electromagnetic field tensor
Fm o (u,v=0,1,2,3):

o, F*
0, "F*" = 0 (21)

where
*=(p,7) , F¥=—-E", FV=_—¢;B* | ijk=1,23, (22)

E and B being the electric and magnetic fields respectively. A point in the
Minkowski space is z* = (¢, %) and the dual field tensor *F*" is

1
P = e (23)

In vacuum, where the electric current j# vanishes, the Maxwell equations
are symmetric under the duality transformation

FH — *pHv o TR R (24)
which corresponds to the interchange of electricity and magnetism
E—B,B— —E. (25)

This symmetry is broken by the presence of the electric current j* in
equation (20). It is possible to restore the symmetry introducing a magnetic
current k* = (o, IZ) in the right hand side of equation (21) giving the modified
Maxwell’s equations

o,F" = —jh, (26)
8, "Fm = —fh, (27)



They will be symmetric under the duality transformation (24) supple-
mented by
g = kP K — —gH (28)

Let us examine into details the simplest possible situation: a particle of
mass m and electric charge ¢ moves in the field of a magnetic monopole of
strength ¢ fixed at the origin

B= %F. (29)

Let us remark that equation (21) is automatically satisfied and the mag-
netic current, k,, breaks the dual symmetry. Dirac [14] was able to circum-
vent this difficulty, showing that a dually symmetric electromagnetism could
be quantized provided that the condition

qq9 _ N

fic 2 (30)
was satisfied. Here n is an integer and we shall henceforth adhere to the
convention of units # = ¢ = 1 where A is the Planck constant and c is
the velocity of light. This is the famous Dirac quantization condition which
implies charge quantization.

Let us observe that in the presence of a monopole, the vector potential
cannot exist everywhere because *F" satisfies equation (27) rather than
equation (21). The best we can do is to define an A such that B is given by
6 x A everywhere except on a line joining the origin to infinity. To make
things more specific let us consider the magnetic field due to an infinitely
long and thin solenoid placed along the negative z axis with its positive pole
g at the origin. The line occupied by the solenoid is called the Dirac string.
The vector potential A of the solenoid can be written, in polar coordinates,
as

rsin 6 (31)
which is singular on the negative z axis. It is obvious that, by a suitable
choice of coordinates, the Dirac string may be chosen along any direction
and in fact we can choose a continuous curve from the origin to infinity.
Choosing the Dirac string along the positive z axis we have

1+ cosf

A = A, = A, = —
! 0=0, Ay grsin&

(32)



The Dirac string is a considerable embarrassment in the monopole theory.
It is quite disturbing to find that the vector potential A that describe a Dirac
monopole has a string singularity even though it can argue that the string is
undetectable.

Wu and Yang [15] have recast the theory of the Dirac monopole into a
form which avoids the use of a singular vector potential. The sphere sur-
rounding the monopole is divided into two overlapping regions R, and R,.
R, excludes the negative z axis and in this region A is defined as in (31).
The second region R, excludes the positive z axis and the vector potential A
is defined as in (32). It is quite obvious that A% and ff”, the vector potentials
in the regions R, and R, respectively, are both finite in their own domain.
In the region of overlap they differ by a gauge transformation:

b . 1,081
A=A — ng , (33)
with S = €%94¢_ If S is not single-valued, then the change in the phase of the
wave function of a particle with the charge ¢, as the particle is transported
around the equator, is ill defined. So we must demand
(34)

n
QQ—Q

which is precisely the Dirac quantization condition (30).

3.2 The Dirac monopole and the Hopf map

From the above presentation of the physics of the Dirac monopole it is quite
transparent that the presence of point magnetic monopoles necessitates a
fibre bundle formulation of electrodynamics [16, 17, 18]. The Hopf fibering
of S3 over a base space S? with fibre S! yields the Wu-Yang potentials which
describe the Dirac monopole.

For this purpose we start with the Hopf map, which maps S® onto S2.
S3 may be parameterized by 1, 72, v3 and x4, coordinates in R*, obeying

v+ as+as+ai=1. (35)

On the other hand S? may be parameterized by &;, & and &3, coordinates
in R3, obeying
g+&+&6=1. (36)
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The Hopf map is given by

€ = 2(x123 + 2274) , Eo =2(wox3 —T114) , &3 =27 +25— 25— 15, (37)

To see more neatly the relationship among Wu-Yang potentials we pro-
ceed to a parameterization of the sphere S* by the Euler angles ¢, 6, ¢:

Tr1 = COS M COSQ Zo = sin M COSQ
1 — 2 9 ) 2 — 9 2,

B Y-\ . 0 (Y=o . 0
T3 = COS < 5 sing @4 =sin 5 sin (38)
with 0 <0 <mand —7 < (¢ + ¢)/2 <.
The Hopf map (37) then gives
& =cospsing |, & =singsinf , & = cosh. (39)

The angles 0,  may be identified with the polar angles on the sphere S?
and 4 is the angle on the S! fibre.
The magnetic field of a monopole (29) is described by a 2—form oy [18]
B = goy, = ¢gsin0df N d¢ . (40)

The 2—form o5 is closed but not exact on S? and we have shown that
there is no vector potential A on S? such that B = dA or in components
B = v x A. On the other hand, oy as a 2—form on S® is exact since all

closed forms on S? are exact taking into account that the second cohomology
group of S is trivial, H%(S?) = 0.
Therefore on S3, B is exact and there exists a 1—form A such that

B =dA. (41)
We can easily construct the following as a solution (not unique)
A = 2¢(zodz) — 21dxo + 24dx3 — T3dT4) = —g(d) + cosOdo) (42)

verifying equation (41) with B given by (40)
Now taking the sections 7, and 7, of equations ¥ = —¢ and ¥ = ¢ ,

respectively and considering the pullback of A under such sections, we get
[19, 16, 17]:

Toih=—¢ = Aj=g(l—cosh), Aj=0, (43)

Y =¢ Ag:—g(1+cos¢9), Ab =0, (44)

which together with A2 = A% = 0 allow to recognize the Wu-Yang potentials
(31) and (32).
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3.3 Kaluza-Klein monopole and Taub-NUT
gravitational instanton

In what follows we shall briefly present the Kaluza-Klein monopole [20, 21]
which was obtained by embedding the Taub-NUT gravitational [22] instanton
into five-dimensional Kaluza-Klein theory.

For this purpose it is necessary to construct soliton solutions in Kaluza-
Klein theories. By solitons we mean non-singular solutions of the classical
field equations which represent spatially localized lumps that are topologi-
cally stable. The construction of a soliton in Kaluza-Klein theories is analo-
gous to the magnetic monopole of 't Hooft and Polyakov [19] that occurs in
non-Abelian gauge theories.

The Kaluza-Klein monopole in a five-dimensional theory can be viewed
as a principal fiber bundle with M* as the base manifold and U(1) as the
structure group. The vacuum is the trivial bundle M* x S* but of course
there exist topologically inequivalent bundles. At spatial infinity a solution
will describe a S* bundle over S? (the boundary of the 3—dimensional space)
and there exist an infinite collection of such bundles, each characterized by
an integer which can be identified with the magnetic charge of the soliton.

The simplest and basic soliton is the magnetic monopole [20, 21]. It is
a generalization of the self-dual Taub-NUT solution [23] and is described by
the following metric:

ds? = — dt?
+ V(r)dz* + AF)dF]? + V7 (r)(dr? + r2d6* + r* sin® 0 dg*)(45)

where 7 denotes a three-vector 7 = (1,0, ¢), the gauge field A is that of a
monopole (29) and function V(r) is V(r) = .

The trivial term —d#?> corresponding to time was added, converting the
four-dimensional Newman-Unti-Tamburino line element into a static solution
of the five-dimensional vacuum Einstein’s equations. There would appear to
be a coordinate singularity when r = 0, where the Killing vector field has
a fixed point. This is the so called NUT singularity and is absent if z* is
periodic with period 4mg [23]. From equation (29) it is clear that the gauge
field A, is of a monopole and has a Dirac string singularity running from
r = 0 to co. As usual this singularity is an artifact if and only if the period
of z* is equal to 47g.
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