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Abstract

We report on progress of our project on extreme relativistic (ER)
Compton scattering of very hard incident photons (hwl > mc2) from
bound electrons. We have considered the case of a Coulomb atomic po-
tential, of arbitrary nuclear charge Z. The calculation of the ER form of
the S-matrix element was done with an analytical method. In the present
case, this is a viable alternative to an impracticable ab initio numerical
computation. In order to obtain the dominant behavior of the matrix
element in the large w; limit, the momentum transferred to the nucleus
A need be ascribed a constant (albeit arbitrary) value in the limiting
process. The result depends critically on the spectral range in which the
scattered-photon energy wo is situated. We have considered the wy range
covering the Compton line, for which the ratio ws/wi need be kept finite.
The triply differential cross section, d°crr / dw2dQ2d A, was calculated for
the range of Compton line in terms of hypergeometric Appell functions.
This is a rather unique example of a most elaborate Coulomb problem
that could be solved analitically, in closed form. Finally, we report nu-
merical results for the triply differential cross section, that has attracted
theoretical and experimental interest recently.

1 Introduction

An extensive theoretical and experimental effort has been invested in the study
of Compton scattering by bound electrons, for photon energies ranging from
keV’s to about 1 MeV. Specific of the bound-electron Compton effect, in com-
parison to its free electron counterpart, is the width acquired by the line and
its shifted position. For references, see the book by Williams [1], concerning
the lower (nonrelativistic) energy photon range, and for the higher (relativis-
tic) range, the review article by Bergstrom and Pratt [2], and a special issue of
Radiation Physics and Chemmistry [3].

The most significant theoretical advancement in the relativistic energy range
in the last decade was the “numerical S-matrix approach”, developed by Suric,



Bergstrom, Pisk, and Pratt [4], [5]. Their program is capable of handling all
atomic shells, within the independent-electron approximation with a relativistic
central potential of the Hartree-Fock-Slater type. It is limited, however, at high
incoming photon energies fiw; by the convergence of the partial wave summa-
tions it is based on; in practice, this limitation sets in at about hw; ~ 2mc2.

We have been considering recently the problem of Compton scattering by
K-shell electrons in the extreme relativistic (ER) limit, i.e., for incident photons
hwy >> mc?, in order to cover the photon range left open by the numerical S-
matrix approach. We have treated the case of a Coulomb potential of arbitrary
Z, and have integrated the S-matrix element in the Furry picture of QED. Our
only approximation was to retain consistently the dominant order in mc? / hws .
We note that the ER limit of bound-electron Compton scattering was analyzed
by Pauli and Heisenberg (see [7]), early on in the development of relativistic
quantum mechanics, although no cross section was obtained.

The method we use for integrating the ER matrix element is based on a
combination of analytic procedures that we have developed earlier in related
contexts (NR Compton scattering, Gavrila [8], [9], and ER Rayleigh scattering,
Florescu and Gavrila [10]). We have shown that the Dirac spinors and Green’s
operator needed in the calculation of the extreme relativistic Compton matrix
element can be replaced by their nonrelativistic counterparts, taken with rel-
ativistically modified parameters. This has allowed the integration of the ER
matrix element in a manner similar to the NR case [8]. We have here a most
elaborate Coulomb problem for which it was possible to complete the calculation
analytically and obtain the result in closed form (hypergeometric functions), in
a situation when a direct numerical computation is still prohibitive. Our ana-
lytic result is part of an ongoing project on the study of ER Compton scattering.
Within the same project, we have presented earlier the discussion of the infrared
problem associated with the ER scattering [6].

Beside a brief presentation of our analytic results, we shall also give a numer-
ical application, namely the computation of the Compton cross section triply
differential with respect to the scattered photon energy and angles, and to the
angles of ejected electron (expressed in terms of the total momentum transfer
to the nucleus A), d*ogg /drs dQ2 dA . This cross section is an intermediate
step in our project, aimed at the computation of d’cgg /dksdQ2. We note
that, recently, Kaliman, Suric, Pisk and Pratt [13] have calculated the triply
differential cross section within the numerical S-matrix approach, for Cu and
Pb at several incident energies (the highest of which was 662 keV), motivated
by experimental research (see [13], for references). As in the case of the dou-
bly differential cross-section, such numerical calculations become prohibitive at
higher photon energies, and alternative methods are needed.

Our endeavor was encouraged by the new developments in the production of
laboratory hard photons. y-ray photons with energies as high as 32 MeV have
been reported, and energies up to some 225 MeV are considered to be attainable
(see [11]). With all the progress achieved in terrestrial labs, however, there is no
way that these can compete with cosmic y-ray sources, since photons of up to
107 MeV have been observed to be emitted from the center of “active galaxies”
(see [12]).

The content of the paper is the following. The physics of the high-energy
limit of the Compton effect is presented Sec.II. Our analytic calculation of the
cross sections is outlined in Sec.ITI. Finally, in Sec.IV we present the numerical



results for the triple differential cross-section.

2 ER matrix elements and cross sections

In the initial state of the process, we are dealing with a bound K-shell electron

of energy Eg = v = (1— a2)1/ ? and magnetic quantum number my, plus a
photon of momentum k1, energy w; = k1, and polarization vector s;. In the
final state we have a continuum electron of asymptotic momentum p, energy
E, = (1 + p2)1/ 2, and magnetic quantum number my, the scattered photon
having momentum ko, energy ws = k2, and polarization vector so. We are
using natural units (A = m = ¢ =1) , and denote a = aZ, where « is the fine
structure constant (in natural units a = €?).

The quadruply differential cross section for the Compton effect, in which all
characteristics of the particles involved are recorded, can be written as

dio = 2:? ‘M(C)‘ § (Bo + k1 — By — k2) p*dpdQpdrzdQs (1)

where dQ» refers to the angles of k2, and the § function takes care of the
conservation of energy

E0+K,1=Ep+1€2. (2)

The matrix element entering here is given by
MO =M 4 (@ (3)

where M () is the term corresponding to the Furry diagram “absorption first”:

M(l) / / an 1'2 —il‘n'/g-rg

(- 82) G (ra,r1;Q1) (- s1) 1Ty (ry) dradre,  (4)

A similar formula can be written for M2 describing the diagram “emission
first”. wom, (r1) is the initial spinor of the electron, u&,}%Z (r2) is the final,
continuum spinor with incoming asymptotic spherical waves, normalized per
momentum interval, and a the Dirac matrices. G (rz,r1;Q) is the Green’s
function for the Dirac equation, with energy parameter Q. Qy in Eq.(4) is given
by

Q1 = Eg + k1 + e, e— 0T, (5)

In the following, we shall not be interested in the dependence of the cross
section on all the characteristics of the photons and electrons. We shall consider
initially polarized photons but will not analyze their final polarizations. Nei-
ther shall we analyze the final polarizations of the electron. The corresponding
quadruply differential cross section per K-shell electron is

~ K2
d*s = a2

X Z Z ‘M(c)‘ § (Eo + k1 — Ep — Kk2) p°dpdQ, dkadSYs . (6)

mi,mz2



The goal of our work is to extract the dominant behavior, exact in Z, of the
matrix element Eq.(3) and cross section Egs.(6), for k; — oo . We have shown
that this is obtained by keeping the momentum transferred to the nucleus,

A=Kz —Ki—DP, (7)
constant in the process. Our ER limit is thus characterized by the conditions:

K1 — 00, A =finite. (8)

The ER calculation of the matrix element and cross sections depends on the
range of the scattered photon spectrum considered. One can distinguish three

main ranges:
(i) The soft-photon end, defined by

Ko < €, (9)

where € > 0 and sufficiently small. We have found that p and k; are quasi-
parallel. Moreover, in this range, the Compton effect and photoeffect are con-
nected theoretically by the “soft-photon theorem”. This case was discussed in
detail in [6].

(#) The Compton-line, defined by n = (k2/k1) = const, with 5 such that

€ <n<l—w; (10)

here € , @w > 0 are nonzero, sufficiently small quantities. Again, p and k; are
quasi-parallel; p — oo

(7ii) The tip of the spectrum, located in the vicinity of k** = Ey + k; — 1,
hence having p = 0 . In this vicinity, k2 = k1 — 0o , but n < 1 (strictly).

Important kinematic conclusions for the range of the Compton line can be
drawn by manipulating the energy conservation equation Eq.(2) when expressed
in terms of A rather than p. These are:

(1) The quantity

0
65/&11 (1—1/1 'I/z) = 2K sin2§ , (11)

where v; = k;/k; (i=1,2) and 6 is the angle between them, needs to be kept
constant (albeit arbitrary) in the ER limit. This implies that the relevant scat-
tering occurs at infinitesimal angle 6 as k; increases; therefore: £ ~ k; (02 / 2) .
We note that already Heisenberg and Pauli [7, Sec.1], had realized that Eqgs.(8),
(10), and £ =const, were the key conditions needed to define the ER limit,
although no proof was given.

(2) The angle of A with v is fixed, such that its cosine, w, is given by

w , where q= E—7. (12)

A (1-n)

(3) A is limited by
A > gl . (13)



With this in mind, the quadruply differential cross section can be written

(at £ #0) \
d 5ER 2 1 ~(C) 2
o A s = A = ‘M . 14
drpdy dAdd ¢ g 2 > My (14)

mi,m2
Here M ](52) is the ER form of the matrix element Eq.(3), with w fixed by Eq.(12);
® is the azimuthal angle around A. We shall be interested in the following in
the cross section d®c gr /dr2dfs dA , obtained by integrating Eq.(14) over &.
By integrating further over A | one obtains the doubly differential cross section
d*0 gr/ dk2dQs, to be discussed elsewhere.

3 Analytic calculation of matrix elements and
cross sections

The method of integration we use for the ER matrix element of the Compton-line
range [case (i4)] is a combination of procedures applied earlier in similar contexts
(NR Compton scattering, Gavrila [8],[9]; ER Rayleigh scattering, Florescu and
Gavrila [10]). The matrix element M(©) is integrated in momentum space. For
the final continuum spinor of the electron we use a high-energy approximation
(recall that p — 00), equivalent to the Sommerfeld-Maue approximation (for the
latter see, e.g., [15, Sec.5.8]; [14]). Its essential ingredient is the NR Schrédinger
continuum wave function, with relativistically modified parameters. This is de-
scribed by an integral representation. For the relativistic Green’s function of
the problem we also use a high-energy approximation (note that Q; — oo in
the ER limit) equivalent to the corresponding Sommerfeld-Maue approxima-
tion (for the latter, see Hostler [17]). Here, the essential ingredient is the NR
Green’s function with relativistically modified parameters, for which we use the
integral representation of Schwinger [16] and Hostler [18] in momentum space.
The relativistic K-shell electron is described exactly, using an integral repre-
sentation involving the NR 1s wave function. Thus, the ingredients used in the
calculation of the extreme-relativistic matrix element turn out to be reducible to
their nonrelativistic counterparts taken, however, with relativistically modified
parameters. At start, the matrix element M(C) appears thus as a succession
of 6 momentum integrals (from the original matrix element), followed by three
integral representations, a total of nine integrals. The ER limit of the integrand
is then taken, as was done in [10], which simplifies its expression. In this man-
ner, the integration of the relativistic matrix element becomes similar to that of
the NR one, see [8]. The momentum integrations are carried out exactly by a
technique developed by Gavrila and Costescu [19]. The integral representations
of the final spinor and of the Green’s function can also be carried out exactly
(application of residue theorem in the first case, and, in the second case, quite
remarkably, by finding the primitive of the integrand). Thereby, M @ is ex-
pressed in terms of a single parametric integral. This integral can be expressed
further in terms of hypergeometric functions of two variables, of the Appell
type Fi (a;by,be;c;x1,22) , defined in [20, Sec.5.8.2]. At the end, we are left to
carry out the tedious summations over the electron and photon polarizations
appearing in the cross section Eq.(14).

Finally, the quadruply differential cross section Eq.(14) can be written at



£E#0as

d'GER o 1 (1+77)
— =" ————=TA. 1
droddAd® ¢ k1 7€ (15)
We have defined here
2
q
T:|K|2 {|2(L1 +L2)|2+(1—E>|L3|2} , (16)
where
L, = 2 ] 1-— zla 7
(A2 + a?) 3 —1ia
X [(1 +7+q) 2+ —ia) u P F® 42y 2 F(3)] , (17)
(14 v+ ia) 1
L -1pd) 18
2 (A% +a?) (¢ —ia) “ ’ (18)
4A 1—ia
Ly = — 2+ y—ia) u P F® 19
3 (A2+a2)2 3—ia( +’7 la)u ) ( )
5 92y 9 r N2
KP = a Ta 2+~ ' ia) ¢20%1_(90)
1672 (1+y)T(1+2v) \1 —e—2ma (3 —ia)
We have further denoted .
ia
= 21
st 21)
FO = B (Q-v1—ia1—ia;3—ia; 24,2 ), (22)
F® = F(1-v2-ia,2—ia;4—ia; 2y, 2_), (23)
F® = F(2-v2-ia,2—ia;4—ia; 2y, 2_), (24)
with AL A
q — 9
= _= 2
*TAtia’ TTA—ia (25)
and
tan¥; =—(a/q) , -7 <¥; <0. (26)

We note that there is no s; dependence left in the expression of the cross-
section (15).

As the right hand side in Eq.(15) does not depend on ®, one may immediately
write the ER triply differential cross section at £ # 0 as

Popr 5 2m (1+7%)

—_— = TA 2
dredO0d ~ ¢ Tk n€ ’ (27)

and the ER doubly differential cross section as

dZUER _271_(12 1 (1+772) /oo
\

= TAdA. 2
dl‘-?2dQ2 K1 ﬂ§ d ( 8)

ql

Note that the integral over A is a function of a and ¢, and that £ and n are
contained only in g of Eq.(12). The evaluation of the Appell functions involved,
as well as the integration over A, has to be carried out numerically.



4 Computation of triply differential cross
section

The quantity we have evaluated numerically is

dBogr

Yr(Z A=k ———— .
R( 757’,’5 ) K1 dl‘ﬁQdQQdA

(29)
This, we shall consider as a function of A, depending parametrically on &, 7,
and Z. Consequently, the area under the curve X (Z,€,1;A) /K1 gives the
doubly differential cross section, Eq.(28). At given &, the latter gives the spectral
distribution of the Compton line (variable 1), whereas at constant 7, it gives
its angular distribution (variable £). As known, both distributions peak in the
vicinity of the Compton line for a free electron, which we shall denote by & and
7o, respectively. These are related by the Compton equation, which in the ER
limit reads

&o Mo
(L —no)
We have chosen in the following to represent X (Z,&,n; A) for pairs of param-
eters (£,n) in the vicinity of (&, 70)-

~1. (30)
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Fig.1 Triply differential cross-section X gz, Eq.(29), in natural units, as function of
A, in natural units,, £ = 0.25 and different values of 7, from bottom to top: 0.785,
0.795, 0.800, 0.810, 0.820 and 0.850. The thick solid line at n = 0.800 corresponds to
the free electron Compton line. (a) Z = 50. (b) Z = 82.

In Figs.1 (a) and (b) we give X g at £ = 0.25 , for Z = 50 and 82, respectively,
at 7 as indicated. The corresponding value of 7y for the free electron Compton
peak is 0.8; the associated curves for X i are represented by thick solid lines.
As apparent, the curves for ¥z do not start at the same value of A. This is
because A has physical meaning only if Eq.(13) is satisfied. In the cases shown,
the minimal value of A,, = |q| moves to the right as 5 increases. This, however,
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is not the case at low Z. One notices that, as A, increases, it cuts through the
maximum of ¥ g, reducing ¥ g eventually to only its descending branch.
0.7 T T

05

0.2

Fig.2 Triply differential cross-section X g, Eq.(29), in natural units, as func-
tion of A, in natural units, = 0.5 and different values of £, from bottom to
top: 0.950, 0.980, 1.00, 1.10, 1.20 The thick solid line at £ = 1.00 corresponds
to the free electron Compton line. (a) Z = 50. (b) Z = 82.
In Figs.
1.

2 (a) and 2 (b) we give Xg at n = 0.5, for Z = 50 and 82,
respectively, at £ as indicated. A similar representation as in Figs. 1 and 2 was

adopted. The corresponding value of & for the free electron Compton peak is

With decreasing Z the triply differential cross-section becomes narrower.
analytically.

In the limit Z — 0 the distribution has the behaviour of §(A), as should be,
because for a free particle momentum is conserved. This can be checked also

The calculation of the triply differential cross section described here, will
allow us to pass to that of the doubly differential one, d>0gg / dk2 dfs, closely
related to the Klein-Nishina cross section for the free electron.
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