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Abstract

Using Karpman-Soloviev perturbation procedure the influence of
the third order dispersion on the bound state of two solitons of the
NLS equation is investigated. The problem has two small parameters
(supposed to be of the same order): the small overlap of the two well
separated solitons, and the amplitude of the third order dispersion. If
the velocities of the two solitons are the same, a bound state is formed,
with an oscillating expression for the distance between solitons. When
the third order dispersion is introduced a slow monotonous increasing
function of time is superposed over this oscillatory behaviour.

1 Introduction

The problem of a train of N initially equal and equidistant solitons of the
nonlinear Schrodinger (NLS) equation has attracted a great interest in the
last decade, mainly due to its possible relevance to the physics of pulse prop-
agation in optical fibers [1]-[3]. The N-soliton solutions of a completely inte-
grable system is easily obtained by the inverse scattering transform method,



and can be found in any textbook on solitons. But the method fails to give
an answer when the solitons parameters are practically equal, a situation
encountered in a train of N-solitons. Actually in such a train the solitons are
initially quite well separated and a perturbation approach of the problem is
well justified. The unperturbed state corresponds to N independent solitons,
while the perturbation is given by the overlap of two neighbour solitons. Sev-
eral perturbation approaches are available [4]-[8], but in what concerns us in
the present paper we mention and shall use the ”quasiparticle approach”,
developed many years ago by Karpman and Solov’ev for two-soliton system
[4], based on the perturbation theory for the one soliton solution [8], [9].
The problem of N > 3 interacting solitons was discussed by many authors
[10]-[18], and it was discovered that the soliton positions are obeying the
equations of the complex Toda chain with N nodes, which is a completely
integrable system. This explains the stability of such systems, observed in
numerical calculations.

Although the theoretical discussion in [4]-[18] is quite general, including
any type of perturbations, not only the perturbation generated by the overlap
of the solitons, explicit results concerning a specific type of perturbation
are only briefly mentioned. It is the aim of the present paper to discuss
the effect of a third order dispersive term, e%, on the bound state of two
initially identical and well separated solitons. In the next section, using the
first order perturbation theory, the evolution equations for the one-soliton
parameters are written down, and the main results of Karpman and Solov’ev
[4] are reviewed. We shall concentrate our attention on the time dependence
of the distance r(t) between the two solitons. If € = 0 this has an oscillatory
behaviour of period T [4]. In section three the effect of the third order
dispersive term on 7(t) is determined in first order in €. Actually we succeeded
to calculate an interpolating function 7(t¢,), which coincides with r(¢) at
discrete times ¢, = nT. A polynomial increase of 7(t,) with n is found. Few
conclusions and remarks are given in the last section.



2 Basic equations

Consider the perturbed NLS equation
. 1 9 .
iy + S Uos + lu|“u = ieR(u). (1)

When € = 0 it has the one-soliton solution

eapli6(z,1) o)

t) =2
us(z,t) = 2v cosh z(z, t)

where

z(x,t) = 2v(z — £(1)), ¢z, 1) = 2u(z — (1)) + 6(¢)
E(t) = 2ut + &, 5(t) = 2(p® + v°)t + . (3)

Here p, v are the real and imaginary part of the eigenvalue ( of the associated
spectral problem to the NLS equation, ( = u + iv, and &, dp are the initial
position and phase respectively.

When € # 0 the first order perturbation theory gives [4], [8], [9]

ZZZ—'[; =eM(u), C;—I; = eN(u) (4)
%:Q,u—i-e(?( ) Z(Z 2(p* + %) + 2peC (u) + eD(u)
where
e e
5 /oo cosh z u)e”dz
C(u) = 41/2 —~_Re /_ ) COSZhZR(u)e—% (5)
D(u) = 21VIm _;oo %R(u)ewdz

Let us consider we have a superposition of two practically identical and
well separated solitons, u = u; + ug, where each uy, us is of the form (3) and
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for convenience we assume &; > &. With the notations

r==§& — &, Y=0—0, p=rr-—u (6)
v+ v _ Mt pe
2 M) /’L 2 I

V= q= M2 — [

the working approximations are

q

7] ;<<1, vr>1, |plr<l1. (7)

14

<1,

The first three inequalities reflect the fact that the two solitons have practi-
cally the same parameters and are well separated, while the fourth one is a
convenient approximation which will simplify the results.
The perturbation due to the overlap of the two solitons is given by
R(un) = 1205, + 2 Puny)  (mi 7z =1 or 2)
where u,, has to be evaluated at the position of ni-soliton. Using the nota-
tions (6) one obtains

¢
eR(uy) = 161°[3i cos(2ur + 1) — sin(2ur + )] € e e
cosh” z
i
€R(U2) = 16y3[3i COS(Q/],T + ¢) + Sin(Q,LLT‘ + 1/;)] €h2 efe 2T (8)
cosh” z

and the small parameter characterizing the perturbation is given by e 2".

Taking into account only this type of perturbation the calculation of the
integrals appearing in (5) is straightforward, and the evolution equations for
the parameters of the two solitons write [4] (n=1 and 2)

dpin
c/llt = (—=)"16v°e?"" cos(2ur + )
dyﬂ n 3 _—2vr _:
P (=)"16v°e™ """ sin(2ur + 1) 9)
dé-n —2ur s
P 2pn + dve™ " sin(2ur + )
ddy, . -
= 2(p2 + v2) + 8uve™ " sin(2ur + ) + 24v2e " cos(2ur + )



It is immediately seen that x4 and v are constants of motion, while p and ¢
are satisfying the equations

dp 3 _—2ve _: dq 3 _—2ve
pri 32v°e e sin(2ur + 1), i 32v°e” ¢ cos(2ur + ) (10)
It is convenient to introduce the complex quantity Y = ¢+ ip, and from (10)
it satisfies the equation

ay .

— = 323 i CurtY) 11
o (11)
Also the relative distance between the solitons r(¢) and phase difference v (t)
are satisfying the evolution equations

¥ = (12)
W _ 4(v
= P+ pq)- (13)
By a straightforward calculation one can prove that the quantity
A? =Y? — 1602 2 i) (14)
is also a constant of motion [4]. Then the equation (11) writes

Yy

— —2(Y? - A?) =0, (15)
dt

whose solution is

Y = —Atanh[2Avt — (a; + i) (16)

where a4, g are real integration constants. Writing Y = ng+4my the system
of two solitons is completely characterized by the set of constants p, v, ng and
my.

In the following we shall consider the case my = 0 and ny # 0. Then it is
possible to consider also ay = 0 and Y becomes (; — «)

Y = —ing tanh(2ingvt — ) (17)
Separating the real and the imaginary part we get

sinh 2¢ sin 4ngvt

t - s t =
Po(t) nocos 4dnguvt + cosh 2a %(t) = o

18
cos 4ngrt + cosh 2a (18)



Then the equation for 7(¢) can be integrated with the result [4]

1., 82
r(t) = —In[— (cosh 2a + cos 4ngut)] (19)
v " ng
which is a periodic function of ¢ with the period
T
= , 20
2V|TL()| ( )

For t = 0 we have ¢(t = 0) = 0 and the two solutions have the same velocity.
Now we can verify the approximations (7). From vry < 1 and J%OL < 1 we

get

4 h
dveosha o Mol < 1
\n0| vV

both being satisfied if |ny| < v.

3 Third order dispersion effect

Beside the perturbation generated by the overlap of the two well separated
solitons we shall consider an additional perturbation in the form of a third
order dispersive term, ie% and one assume the small parameters € and e 2"
to be of the same order of magnitude. This perturbation acts on each soliton
separately, and its explicit expression is given by

: 2 2 61 2 _ .2 6
eR(u) = e8lip(—p” + 3v° — —) +v(3u° — v+ 5—) tanh zu (21)
cosh” z cosh” z
with u(z) given in (2). The integrals in (5) are easily performed and instead of
(9) the following evolution equations for the soliton parameters are obtained

(n=1,2)

dpin

% = (=)"16v3e 2" cos(2ur + 1))

dyﬂ n 3 _—2vr _:

prl (—)"16v°e™ " sin(2ur + 1) (22)
d¢, )

% = 2y + dve™ " sin(2pr + 1) + 4e(3pp + vy)

doy, . _

il 2(p2 + v2) 4 8uve™ " sin(2ur + ) + 242" cos(2ur + ) +

166,“71(,“% - Vﬁ)



It easily seen that p, v remain constants of motion and the evolution equa-
tions (10), (11) for p,q and Y are unchanged, while the evolution equations
for r(t) and v become

d

—d:; = —2q — 8¢(3uq + vp) (23)
dw . 2 2 . 1 2 .2
7 = A(ug + vp) +16€[(3° — v°)g — 2pvp + Ja(¢* ~ 1))

It is convenient to use the same quantity A? defined in (14), but now it will
be no more a constant of motion and will satisfy the evolution equation

dA? i ay

g (Buy — iy + 2—2>— 24

o = 8 (3u wY + ale” —p7) ) (24)
We shall assume that any quantity () can be written as QQ = Qo + €Q1,

where () is the value of () when ¢ = 0, and () is the first order contribution

due to the third order dispersive perturbation. For instance A = Ay + €Aq,

with Ag = ing and from (24) we get

d\;  4i . i dYo
= — (3,uY0 —ivYy + E(JO(QS —p§)> 0 (25)

% o

where Yy = qo + ipy and qo, py are given by (18). With the initial condition
A;(t = 0) = 0 this equation can in principle be integrated as containing only
known functions. Also for Y we can write Y = Yy+€Y7, where Y] is satisfying
the equation

dY;

d—tl = 4(YoY: — AoAy),  Yi(t=0)=0. (26)
Separating the real and imaginary part we obtain the expressions for ¢; and
p1 respectively. Writing r(t) = ro(t) + eri(t), 71(t = 0) = 0, the time
dependence of r1(t) is determined by

d’f‘l

— = —2[q1 + 4(3uq0 + vpo)]- (27)

Although it contains only elementary functions, the integration is te-
diously and the final result would be very complicated and irrelevant for a

7



simple interpretation. Therefore instead to find the exact expression of 7 ()
we shall determine its variation over a period T°

Ari(t) =t +T) — () (28)
If we know it at the discrete times ty = 0,t; = T, ...t, = nT... an interpolation
function 7 (t,) is easily found

n—1

§=0
This function will coincide with the exact 71 (¢) for the discrete times ¢, and
will have quite a simple monotonous variation with n. It is easily seen that
dAr 1

dt

where Ag; = ¢1(t +T) — ¢1(t) is the real part of AY; = Yi(t +T) — Yi(%).
For AY;(t) we get

= —2Aq, (30)

dAY;
dt

and from (25) AA; is a constant. In this way our problem is considerably
reduced. We have to determine AA; integrating (25) over a period 7" and
then find AY;, Ar; and finally 7 (¢,) from (31), (30) and (29) respectively.
It is convenient to introduce the integration variable x = 4vngt — 7. Then
fOT ..dt = [T_...dz and we can fully exploit the symmetry properties of the
integrand. We remain with the integral

sinh 2«

AA; = 8ny /07r ( [(3u +iv)(1 — cosh 2a.cos ) —

cosh 2« — cos x)3

2 : 2 02
N ng . o sinh"2a —sin“z
— — d 32
(3u — i) sin” z + i7, Sin x(cosh S y—— x)Q] x (32)
Straightforward calculations give
AN =—-A+1iB
1 Un

a= i () 3
7T'szinhZ v (33)

BT , 1+ 6 tanh?2a (@)3

v —
2 sinh” 2« v
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As v < |ng| we see that B is negligible compared with A and AA; is practi-
cally a real quantity. Now the equation (31) written in z-variable is

Y,
T if(@)AY: = ~iA,

sinh 2« — ¢sinx

f(x) =

cosh 2a0 + cos x

whose solution is

AYy = —iAAexp (’L/ f(:m)dxl) / dppe~tJo ! fladm
0 0

We find

cosh 2a + cos x
cosh2a +1

/ f(z1)dz = 2arctg(tanh o tan 2) +iln
0

and assuming tanh o ~ 1 the first term is practically equal with z, an ap-
proximation we shall use in the following. Finally we get

i 2i cosh 2a(1 — €*®) + ze'® + sinx
AY; = ——AA 35
! 27! cosh 2a + cos x (35)
and neglecting B with respect to A in (33) we obtain
9oAg = A2 cosh 2a(1 — cosz) + zsinx (36)

cosh 2a + cosx

Then Arq(t) is obtained directly integrating the previous relation with re-
spect to ¢

dzx.

Ari(z A/z 2 cosh 2a(1 — cosz) + zsinx

cosh 2a + cosz
We shall evaluate it for t = mT, i.e. z, = 2mm. The integral [;™ ...dx
is written as a sum of mn integrals Y7 ' OQW(]H) ...dz, and each such inte-
grals is reduced to [ _...dr with the variable change x — z — 7(2j + 1).
Straightforward calculations give

A7 (Tm) =

1272 h 2
i M( o8 a(cosh2a+1)—

sinh? 2« v \“sinh 2



In(cosh 2ac + 1) — (1 + In2 + 2a)) m. (37)

As we have supposed tan o ~ 1 this expression can be simplified, and the
interpolation function 7 (x,) is obtained by performing a summation over m.
The final result is

672

m(n) = fﬁp cosh2a + 1 — In2(cosh 2a + 1) — 2a)n(n — 1).  (38)
sinh” 2a v

4 Conclusions

The main result of this paper consists in the evaluation of the effects of a
third order dispersive perturbation on the bound state of two practically
identical and well separated solitons of the NLS equation. The calculations
are done in a first order perturbation theory and we concentrated on the time
evolution of the distance r(t) between the two solitons, which was written
as ro(t) + eri(t). Here er((t) is the first order contribution of the third order
dispersion, superposed on the oscillating result 74(¢), valid in the absence of
this supplementary perturbation. We succeeded to evaluate exactly an inter-
polation function 77 (¢,) coinciding with 7 (¢) for t = nT". This is an increasing
function of n, given by (38), and depends only on the mean value parame-
ters u, v of the soliton system, and the parameter o which characterizes the
unperturbed solution. The main conclusion which can be drawn is that for
t~ O(ﬁ), er1(t) ~ O(1) and the previous perturbational approach will be
no more valid. This result disagrees with some recent results for a perturbed
train of NV solitons, based on a theory of a perturbed Toda chain [14], [16].
Further investigations are necessary to see the origin of this disagreement.
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