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Abstract

This paper reviews results on the existence theory of solutions
for a class of kinetic models, recently introduced as generalizations
of the classical Boltzmann equation. The problem of the existence,
uniqueness and positivity of global solutions can be investigated by
extending monotonicity methods, developed for solving the classical
Boltzmann equation.

1 Introduction

The last years have been marked by an increased interest in the mathematical
properties of the non-linear kinetic models, appearing as generalizations of
the classical Boltzmann equation [1]. This can be explained by the various ap-
plications not only in physics, astrophysics and chemistry (e.g. studies of sim-
ple and complex/reacting fluids, granular media, coagulation-fragmentation,
formation of planetary rings , galaxy collision) but also in modeling evolution
processes in immunology, traffic flow, communication networks, etc.

The above generalized Boltzmann equations are phenomenological or mi-
croscopic models that describe the evolution of populations (macroscopic
systems) of many well individualized, objects (e.g. rarefied gas particles,
cells networks signals etc.) interacting among themselves. Such interactions
are (localized) microscopic processes in the following sense: any interaction
has a very short duration, with respect to the time-scale of the macroscopic



evolution; b) the number of partners of any interaction is very small, with
respect to the total number of the components of the population. Depending
on the model, an interaction may change the state, nature and/or the num-
ber of the participants in interaction. This may result in modifications of the
values of the physical quantities characterizing the states of the interacting
objects. However, such modifications must be consistent with certain balance
laws (e.g. conservation /dissipation laws ) imposed by the peculiarities of the
microscopic processes.

The problem of the existence and uniqueness of solutions to the general-
ized Boltzmann equations is not only of an academic interest. Indeed, good
criteria for the existence of general solutions and a detailed study of the
properties of the solutions can be particularly useful in obtaining effective
convergent numerical schemes for the models.

The generalized Boltzmann equations have mathematical properties sim-
ilar to those of the classical Boltzmann equation. Due to this fact, the prob-
lem of the existence, uniqueness and positivity of global solutions can be
solved by extending, non-trivially, monotonicity methods developed within
the framework of the mathematical kinetic theory of the classical Boltzmann
equation.

To the best of the author’s knowledge, monotonicity methods were in-
troduced in the study of nonlinear kinetic equations by Arkeryd [2] who
investigated the space homogeneous Boltzmann equation. Wiesen [3] ex-
tended the results of [2] to a space-homogeneous Boltzmann model for a
single component real gas with inelastic binary collisions. Recent applica-
tions of Arkeryd’s method to various models (fluids with stochastic collision
laws granular media, reactive gases, fluids with dissipative collisions) were
obtained, in particular, by Lachowicz and Pulvirenti [4], Griinfeld [5], De
Angelis and Griinfeld [6], [7].

In this paper, we present two such recent results, representative for the
application to conservative and dissipative models, aiming to emphasize their
common features.

Besides this Introduction, the paper includes three more section. In the
next section, Section 2, we present the common features of the generalized
Boltzmann model in a rather formal, abstract frame and provide the main
examples. Section 3 contains the main existence results and the general
scheme of the argument. Section 4 is devoted to the conclusions and open
problems.



2 Generalized Boltzmann models

The analysis of various Boltzmann models reveals that, in general, they are
described by nonlinear evolution equations (in some ordered Banach space
X) of the form

df

aZDf_*_Q(taf)’ t>0, (1)

where the unknown f = f(t) characterizes the state of the macroscopic
system at time ¢. The two terms of the r.h.s. of Eq.(1), Df and Q(t, f)
describe the free motion and the contribution of the interaction processes,
respectively. From a mathematical point of view, D is the generator of an
evolution linear group in X, while Q(¢,-) - the so-called Boltzmann operator
-, is a nonlinear integral operator in X.

In many situations, we can write Q(t,-) = Q% (¢,-) — Q@ (¢,-), where
Q" (t,-) and Q= (t,-) are positive (i.e. g > 0 = Q*(¢,g) > 0) and mono-
tone (i.e. ¢ > h > 0= Q*(t,g) > Q*(¢t,h) > 0). Moreover, Q*(¢,-) and
Q~(t,-) satisfy certain relations -macroscopic balance laws- determined by
the microscopic balance properties.

An important problem related to Eq.(1) is the initial value (i.v.p.) prob-
lem. This can take various formulations, depending on the model.

As a first example, we consider the generalized Boltzmann model in-
troduced in [6] for a reacting gas mixture of N species A; and mass m;,
1 <i < N, with binary reactions (without interaction with photon fields)

AZ+AJ—>A]€+A1, 1SZ,],]{J,ZSN (2)

Here i = j = k = [ corresponds to the non-reactive (elastic) processes.
According to the model, for each species 7, the gas particles have one internal
energy state,F;, 1 < i < N (this condition is not restrictive, since different
internal states of a particle can be treated as particles of distinct species).
The reactions are consistent with the conservation of mass, momentum and
total energy, i.e., m; + m; = my + my, m;v + m;w = myv' + myw' and
%"‘Z+Ei+%w‘2+l?j = M#—EML%W—FE, with (v, w) the pre-reaction
velocities of the particles (7, j) and (v',w') the post-reaction velocities of the
particles.

In this case, considerations close to the ideas of [8] lead to the following
i.v.p.



0
&fi =—v-Vyfi +Gi(f) = Li(f), fi(0,x,v) = foi(x,Vv), (3)

where f; := f;(t,x,v) is the one-particle distribution function of the par-
ticles of species 7, and depends on time - ¢ position - x and velocity - v. In

(3),

N
Z /R3>< o0 Teij (¥, v, w,m) fi(t,x,v) fi(t,x + y, w)dydwdn .
Jok,l=1

Here, S? = {n € R?: |n| = 1}.Also, denoting t4;; := Q(Zn"—:f/m v —w|* +

Ei + EJ — Ek — Ela the maps Vi i; Wgiij - R3 X R3 x S? — R3 are defined
by

miv + m;w 21/2(my)'/?
Vi (V, W, n) 1= — - /2 il thij(v, w)'/’n
m; +m; my~(mi + my)1/?
m;v + m;w 212 (my,)1/?
Wi (V, W, m) o= — — -5 () tra,ii (v, w)/*n
m; + m; my'(m; + my)'/?
for (v,w) € Djjp = {(v,w) € R* X R® : ty;; > 0}and vy (v, w,n) =
Wiij(v,w,n) = 0, otherwise. Here vy ;; and wy;;; define velocities of

the particles emerging from reaction (2) as functions of the velocities v
and w, of the particles entering in the reaction. Moreover, pyiij, Tkiij :
R?}x R3x R*x 5% — [0, 00), are given measurable functions (the so-called re-
action laws defined by the microscopic interaction processes). By definition,
Prtij (Y, v, W, n) = 1y (y,v,w,n) = 0 for (v,w) ¢ D;j . Furthermore, due
to the properties of the microscopic interactions,

pkl,ij(Y:"a w,n) = pkl,ji(YaV: w,n) = plk,ij(YaVa w,n)
Tkl,ij(Y7V7 w, n) = ’rkl,ji(yawa v, 1'1) = Tlk,ij (y7V7 w, _n)7
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Drki,ij (Yava w, n) = pkl,ij(_yava w, n)7 Tkil,ij (yava w, n) = Tkl,ij(_yava w, n)'

In addition,

/ ‘P(Va W)pkl,ij (Va w, n)¢(vkl,ij; Wkl,ij)dVden
R3xR3xS52

= S O (Vij ks wij,kl)rij,kl(v, w,n)Y(v, w)dvdwdn

for (1, ¢) : R® x R® —[0, 00), measurable.
Formally, the above properties imply the so-called bulk conservation of
mass, momentum and internal energy, expressed by

2/113 . \I!(J (x,v) fi(t,x,v)dxdv = Z/ ‘I!z(-j)(x, v) fi(0,x, v)dxdv,

(4)
where U\V(x,v) = m;, UP(x,v) = mi|v[’/2 + E;, ¥V (x,v) =
mvj, j=1,2,3, with v; the components of v.

Due to the physical meaning of the quantities fi, it is natural to formulate
the Cauchy problem for Ec. (3) in the space X = (L' R?* x R®;dxdv))N
(with L' -real), equipped with the norm ||f|| = =Y, m; || fill;: and the order
< induced by the natural order of L'-real.

Defining, f := (fi,..., fx), and D := (D, ...., Dy) with (Df); := —v -
Vi« fi, and setting Q™ : (G4, ...,Gx) and @~ := (Ly, ..., Ly) , one can see that
Ec. (3) can be written in the form (1), where the positive and negative parts
of the Boltzmann operators are monotone and (4) provides the additional
macroscopic balance laws.

Our second example refers to a one-component gas of classical particles
undergoing binary dissipative collisions. According to the model, the mass
and momentum are conserved by collisions, but the energy is dissipated [7].
Specifically, for this model, the post-collision velocities v* and w* are defined
in terms of pre-collision velocities v, w by v = v + (1 — 8)(w — v,n)n
and w* = w — (1 — 8)(w — v,n)n,where § € [0,1/2) is the parameter
characterizing the energy dissipation. In this case, following Boltzmann’s
scheme and ideas from [9], [10] we obtain the i.v.p

%F = —v -V F +Gy(F) — Ly(F), F(0,x,v)=Fy(x,v) >0. (5)



The unknown F = F(t,x,v) is the one-particle distribution function (at
moment ¢, position x, velocity v ) of the gas particles. Here

GalF)(t,x,v) : = (1_2%/0'%/%(52 (0w — )%

XP(r,n)F(t,x,w)F(t,x + rn,w” )dndw dr (6)
Ld(F)(txv)::F(txv)/R/ (0, w — v)[Tx
? 7 7 ? 0 R3Xs2 7
XP(r,n)F(t,x + rn, w)dndw dr (7)

where <, > denotes the scalar product on R®* and P: R, xS?— R, isa
given, measurable function with property , P(r,n) = P(r,—n); 0 < v < 1,
R > 0. Further, w* :=w + (%) (w—v,n)n, n €S2

Let M(f)(t) = [raxgs F(t,x,v)dxdv,P(f)(t) = [gsxps VF(t,x,v)dxdv
and E(f)(t) = [gsxps 3 [V[> F(t,x,v) dxdv denote the bulk mass, momen-
tum and energy, respectively. It can be checked that, at least formally,

one has the conservation of mass and momentum, respectively M(fy) =
M(f)(t), P(fo) =P(f)(t), and the dissipation relation

E(fo) = E(f)(t) + R(, f), (8)
where
1 t R
0SREf)==560-8) [ ds[ [~ lnw-v)*
XP(r,n)F(s,x,v)F(s,x+mm,w)dndwdvdxdr. 9)

Observe that if 3 = 0 and P(r,n) = §(r), then Ec. (5) reduces to the classical
Boltzmann equation.

Formulating (5) in X = L' = L'( R*® x R?; dxdv)-real, and setting
D:=—v-Vy Q" :=Gy, Q@ := Ly, one can see that the obtained problem
is also of the form (1).

In the following section, we examine the existence of general solutions for
problems (3) and (5)



3 Existence theory

The monotonicity properties of the positive and negative parts of the Boltz-
mann operator enables the use of the monotone approximation theory to
solve the general Boltzmann equation. To this end, one applies a generalized
version of the Arkeryd’s compensated scheme [2]. In the case of the examples
presented in Section 2, the results are based on rather general assumptions.

Suppose, in the case of (3), that there exist constants ¢, > 0 and 0 < ¢ <
1, such that

/52 Tk1,ij (¥, V, W,n)dn < ¢, [1 + v + \W|2]q .

Theorem 1
Let (14 |v\2)2f0 € X,. Then for each T >0, Problem (8) has a unique
mild solution 0 < f(t) € X, on [0,T] satisfying

0< 1+ [v)?f(t) € Xa,

and the conservation relations (4). Moreover, there is some constant by
depending on fo and T such that

|a+ VP ro) <br|a+vPPR|, o<i<T.

Theorem 2. Suppose there is constant co > 0, such that P(r,n) < cor?,
r>0,ne S If

0< (1+|v]’)*F e L' .= L}(R® x R®; dxdv),
then problem (5) has a unique mild solution F in [0,T], with
0< (14 |v[)?F(t) € LY,

and F verifies the balance laws (8).

Remark: in the particular case 8 = 0, Theorem 2 states the existence,
uniqueness and positivity of solutions for the so-called Boltzmann equation
with “averaged collision laws” [8].

The proofs are rather involved and based on many technical estimations.
However they follow the same scheme. In the remaining of this section we
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give a brief (formal) description of the main steps of this scheme. For de-
tailed proofs of the above results the reader is referred to [6] and [7]. Our
considerations will refer to the abstract model (1):

Step 1. One eliminates the linear part in (1). To this end, a simple
integration on characteristics reduces problem (1) with D # 0 to the simpler
one with D =0

df 4 _

Step 2. Considering (for simplification) that Eq. (1) is supplemented

with balance laws of the form (8), one can write the balance laws as

E(fo)A=E(f)(H)A+ R(t, f)A (11)

with (—A) the generator of a suitable positive, monotone, C, semi-group,
Then if A > 0 is sufficiently large, Eq. (10) is equivalent with the following
equation with positive and monotone terms

Y XB(RAT = Q¥ ) + B0 + R IAf Q1 )}, (12)

supplemented with condition (11).

Further, one uses the fact that X is monotone complete [11], i.e. if the
sequence { gy, }nen is positive, monotone (increasing) and bounded in X, then
it is convergent in X.

Step 3. One introduces convenient regular monotone approximations
QE(t,-) /1 Q*(t,-), Ru(t, f) S R(t, f) as n — oo (by introducing suitable
“truncated” kernels in the original Boltzmann operators).

Step 4 One considers the following approximations of problem (10)

%Jr/\E(fo)Af = Qu (t, ) HAE) () +Ra(t, HIAf=QL (¢, )}, f(0) = fo,
(13)
E(fo)A=E(f)(t)A+ R,(t, f)A (14)
and
df

21 TAEf)AS = Qu(t, ))+AE(N) () +Ba(t, /A =Q7 (5, )}, f(0) = fo,
(15)



supplemented with condition (14).

Step 5. Due to the choice of @<, one can apply the Banach fixed point
theorem to obtain a unique positive solution F,, of Ec.(13). Now, F,, seems
to be an approximate solution of (10). However we do not know whether F,,
converges to some solution of Ec.(12) , as n— oo.

Step 6. To refine the above approximation, one uses the monotonicity
properties of the terms in the r.h.s of Eq. (15) and (13), and for each n
fixed, one constructs suitable iterations {f,;(t)}ien of Eq. (15) such that
foo) < fapeo < foi < ..and fr () < Fo(t) . Then by the monotone
completeness of X, one finds that there is f,,(t) = lim ;00 fni(t) < Fu(?).

Step. 7 Due to the balance laws, {F,(t)},en is bounded. One finds
that {f,(¢)}nen is also monotone and bounded, hence again by monotone
completeness there is f(t) = limy,_,o0 fr ().

Step 8. One proves that Q. (¢, f,) 7 Q (t, f), R.(t, fn) / R(t, f),

A

E(f)(®t) / E(f)(t) and
E(fo) = E(f)(®) + R(t, f)- (16)

Thus f is solution of Eq. (12) if we have equality in (16). One proves
that (16) is satisfied with the equality sign by applying technical estimations
on “moments”, (this imposes the boundedness of the higher order moments
of the initial data).

Step 9 The uniqueness of the solution results by construction, since f is
”smaller” than any other positive solution of Ec.(12).

4 Concluding remarks

In this paper, we presented two examples of existence results for generalized
Boltzmann models obtained by monotonicity methods. The results can be
completed with other applications in the domain of generalized Boltzmann
models. Moreover, these methods seem equally useful to investigate evolution
problems from other fields of science.

On the other hand the results presented in Section 2 describe only par-
tially the properties of the models considered. They must be completed by
a thorough study of other properties of the models, e.g. the existence of sta-
tionary or/and equilibrium solutions, Lyapunov functionals, H-theorems (see
e.g. [7]), asymptotic properties, construction of effective numerical methods.
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