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Abstract

A microscopic statistical mechanical lattice gas model is used to
study phase transitions that occur at the fluid-crystal interface during
electrodeposition on a crystalline electrode surface. Current versus
voltage plots, or voltammograms, constructed from the adsorption
isotherms of the model agree quite well with experiment. The ef-
fects of finite sized electrode crystals on the shapes of voltammogram
spikes associated with first order phase transitions are studied using
the rigorous Pirogov-Sinai theory.

1 Introduction

First order phase transitions often occur as the electric potential is changed
during adsorption or deposition of charged species on a crystalline electrode
surface. These transitions produce spikes in the voltammogram current.
Blum and Huckaby[l] introduced a microscopic statistical mechanical
model which can be used to generate model voltammograms associated with



the adsorption or deposition of such charged species on a crystalline elec-
trode. The model is an adaptation of an earlier three dimensional model
for adsorption of hard spheres|2, 3, 4, 5, 6]. In that model, the spheres can
come in contact with a planar wall containing a lattice of sticky sites. The ad-
sorption model is mathematically equivalent to a two dimensional lattice gas.
The fugacity of a sphere in the lattice gas equals the product of the stickiness
parameter associated with a sticky lattice site times the hard sphere contact
density in the three dimensional model. The Boltzmann factor for the n-
body interaction energy in the two dimensional lattice gas equals an n-body
contact correlation function in the equivalent three dimensional model.

The adsorption model was modified to treat charged species by assuming
that the stickiness parameter, the contact density, the fugacity, and perhaps
the interaction energies are voltage dependent. Assuming a reasonable form
for this dependence on the potential, a voltammogram can be constructed.
For the special case of Faradaic current, the current intensity in the voltam-
mogram is proportional to the derivative, with respect to the potential, of
the adsorption isotherm of the lattice gas.

In Section 2 we discuss the application of the model to the underpo-
tential deposition of copper on the (111) surface of a gold electrode in the
presence of bisulfate and to the reduction of hydrogen on the (111) surface of
a platinum electrode in the presence of bisulfate. In Section 3 we discuss our
recent treatment of the effects of finite size electrode crystals on the shape of
voltammogram spikes. These results are applied to produce a model voltam-
mogram for the underpotential deposition of copper on the (111) surface of
a platinum electrode in sulfuric acid solution.

2 Application of the Model

In some cases, a metal ion can deposit on a “more noble” metal substrate at
a more positive potential than the potential that causes bulk deposition of
the metal. Thus, for a range of potential, only monolayer or submonolayer
deposition will occur. This phenomenon, called underpotential deposition
(UPD), provides an ideal experimental scenario for studying two dimensional
phase transitions at the fluid-electrode interface.

One of the most studied systems is the UPD of copper on the (111) surface
of a crystalline gold electrode in sulfuric acid solution. The voltammogram|7]
has two spikes, the spike at higher potential having a broad foot and an overall
area about twice as large as the spike at lower potential (see Fig. 1). Huckaby
and Blum proposed that the following sequence of voltage-dependent phase
transitions occurs on the electrode surface[8, 9, 10]. At high potentials, bisul-
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Figure 1: Voltammogram of the underpotential deposition of copper on the
(111) surface of a gold electrode in the presence of bisulfate. The model
voltammogram (dashed line) is compared with the experimental one (full
line) from [7].

fate ions form a phase in which bisulfates are above all the lattice sites of
one triangular sublattice of the triangular lattice of adsorption sites. Three
of the oxygens of each bisulfate interact with the triangle of three gold atoms
that neighbor the adsorption site. As the potential is decreased, the bisulfate
leaves the lattice and then returns due to its attraction to the copper ions that
are being deposited. A phase is then formed in which one sublattice is again
occupied by bisulfate, and the remaining honeycomb lattice is occupied by
copper. The voltammogram spike at higher potentials is associated with the
transition to this phase. As the potential is further reduced, the bisulfate is
replaced by copper, this phase transition being associated with the voltammo-
gram spike at lower potentials. We treated the system using series expansions
of the partition function[8, 9, 10|, by studying the low temperature phases in
the thermodynamic limit using the rigorous Pirogov-Sinai theory[11], by in-
troducing and using a mean neighbor approximation[12, 13, 14], and by using
a cluster variation method[15, 16]. The results given by the latter method
are presented in Fig. 1, and the agreement with experiment is quite good.
We have recently applied the lattice gas model, using a new effective clus-
ter approximation, to study the reduction of hydrogen on the (111) surface
of a platinum electrode in sulfuric acid solution[17, 18]. The voltammogram
of this process, first obtained for a crystalline (111) platinum electrode by
Clavilier[19, 20], consists of three regions. We proposed that the high po-
tential region corresponds to water-bisulfate coadsorption in which the water



forms hydrogen bonded chains. There is no phase transition in this region.
At lower potentials, the bisulfate occupies one sublattice of the triangular
lattice of adsorption sites, the remaining honeycomb lattice of adsorption
sites being occupied by a two dimensional “ice-like” structure composed of
hydrogen bonded H503 species. As the potential is reduced, the bisulfate
can leave, but the honeycomb ice-like structure remains, being stabilized
by the hydrogen bonding. As the potential is further reduced, the H5Oj
species is reduced to H3O; and one molecule of Hy gas is evolved. Recent
density functional calculations are consistent with this reaction[18]. The
model thus provides a robust explanation for the well-known experimental
observation that the (111) platinum surface gives only a 2/3 yield of H, gas.
The calculated model voltammogram agrees quite well with the experimental
voltammogram|[19, 20].

3 Effects of finite sizes of electrode crystals

In this section we discuss how the finite-size effects for crystals that are
formed on electrode surfaces can be used to interpret the voltammogram
spikes. We consider the underpotential deposition of copper on platinum(111)
in sulfuric acid medium. Its voltammogram shows a single, symmetric-shaped
spike that corresponds to the first order phase transition that occurs when
the copper ions discharge and form a full monolayer that is commensurate
with the (111) surface of the underlying substrate[21].

We modeled this deposition process[22] by using the standard, one compo-
nent lattice gas on the triangular lattice with an attractive nearest-neighbor
interaction ¢ < 0 and a chemical potential u. We considered parallelogram-
shaped crystals and fixed boundary conditions with an attractive boundary
interaction w < 0 constant along the boundary of the crystal. The model is
equivalent to the Ising model with a bulk coupling —¢/4, a magnetic field
(u — 3¢)/2, and a boundary coupling —(2w — €)/4. Given a crystal contain-
ing n X n adsorption sites that has a boundary interaction w, the Faradaic
current density from the crystal is given as j¥(¢) = —kepyv %Zl [10]. Here
1 is the electric potential, and #¥ is the crystal copper coverage (the average
value of the fraction of adsorption sites on the crystal occupied by copper).
Moreover, k is the number of adsorption sites on the electrode per unit area,
v is the effective electrovalence of copper, ¢ is the elementary charge, and v
is the sweep rate.

It is instructive to find the crystal current density jf/ ?(1) for the trivial
case of a crystal containing just a single site (n = 1) and having fixed constant
boundary conditions with w = £/2. The partition function of the system is



7% (1) = ef(=39) 41, with 8 = 1/(kpT), which yields the coverage 65/*(1) =
e#(1=39) 1752 (1)) = {1 + tanh[B(u — 3¢)/2]}/2. Since the chemical potential
is related to ¢ by u = —veq() — 1) [11], where 1 is the reference potential,
we readily find j5/(1) = k(7veo)?B cosh™{Byeq[) + (3¢)/(veo) — ¥]/2}/4.
Thus, this current density has the shape of a spike described by the function
cosh™ with a maximum at ¢ = —(3¢)/(veo) + 1.

In order to analyze the behavior of a finite sized crystal containing more
than just a single site and to obtain an accurate estimate of the corre-
sponding single-crystal current density, we used the rigorous statistical me-
chanical techniques of Borgs and Kotecky[23] based on the Pirogov-Sinai
theory[24, 25]. They show that the tanh and cosh™ formulas are in fact
a very general result that is true for a large class of lattice models in a
(hyper)cubic-like volume that exhibit a two-phase coexistence. The applica-
tion of their techniques requires that the imposed boundary conditions do
not strongly prefer any of the involved phases. For our one component lat-
tice gas this means that the boundary interaction w has to be close to the
neutral value w = /2 [22]. Then, in complete analogy with the above case
of a single-site crystal, we were able to rewrite the partition function of the
crystal of size n as the sum Z2 = e #fro + e #fv where F?, (vesp. F¥,)
is some well controlled finite-volume free energy associated with the fully
occupied (resp. fully vacant) phase. This again allowed us to prove that the
shape of a spike of the single-crystal current density is given by the function
cosh ™2, namely,

72) s (reo)? v 802" cosh 2[5 reo(w —w) ], (1)

the error term being of order n. Here m* is the Ising spontaneous magne-
tization on the triangular lattice. The point ¢ is the potential at which
the current density j» attains its maximum. It is shifted with respect to
the infinite-volume transition point 1, = —(3¢)/(veo) + ¥ by an amount
proportional to n~!, more precisely, ¥ — 1, ~ [4(2w — €)]/(m*yeyn). Obvi-
ously, the symmetry of our model implies 9=/ = ¢);. Notice that Eq. (1)
holds exactly for the above described trivial case n = 1 and w = /2, taking
m* = 1.

It is natural to imagine that a voltammogram spike can be microscopi-
cally interpreted as a spike in the current density that results from a first
order phase transition on a single (“typical”) crystal of finite size. However,
Eq. (1) implies that this idea turns out to be erroneous: such a single-crystal
spike would be taller and sharper than an experimental spike by a factor of
about 100. As a matter of fact, this conclusion is true for a whole variety of
boundary conditions for which the Borgs-Kotecky theory of finite-size effects
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Figure 2: Voltammogram of the underpotential deposition of copper on the
(111) surface of a platinum electrode in the presence of bisulfate. The model
voltammogram (full line) is compared with the experimental one (dashed
line) from [21].

is applicable (e.g., periodic, fixed constant, a mean-field type, or possibly ran-
dom boundary conditions) because the spike shape (in particular, its height,
width, and area) is predominantly determined by the bulk properties of the
crystal.

Nevertheless, a real electrode surface actually contains many crystalline
domains. Therefore, one should rather view the surface as a huge collection
of crystals, and interpret a voltammogram spike as an average of the con-
tributions coming from various sized crystals. Besides taking the average
over the crystal sizes, one must also take the average over crystal boundary
interactions w, for these vary in general from crystal to crystal. Whereas
the cosh 2 shape of a crystal spike is determined by the bulk properties of
the crystal, the boundary conditions determine the maximum position
of the spike. Thus, as a result of the double average, our interpretation
of a voltammogram spike is that it is an envelope of mutually shifted (but
closely spaced) spikes associated with first order phase transitions that occur
in various crystals formed on the electrode surface.

To calculate the double average, we introduced a simple but realistic



distribution of crystal sizes by assuming that the crystals were a result of
line defects occurring on the electrode surface. Moreover, we used the sim-
plest possible distribution of boundary interactions w leading to a symmetric
voltammogram spike, namely, a wedge-shaped distribution that was symmet-
ric around w = /2. Accurate explicit estimates of the area and the height
of the resulting model voltammogram spike in terms of the microscopic pa-
rameters of our model — ¢, «y, and 1) — allowed us to choose their values so
that the calculated spike agreed very well with experiment (see Fig. 2).

Very recently we have applied the idea of interpreting voltammogram
spikes as envelopes of spikes resulting from various sized electrode crystals to
the underpotential deposition of copper on the (111) surface of a gold elec-
trode in sulfuric acid medium[26], and we again achieved very good agree-
ment with experiment. In the future we plan to apply this idea to analyze
the reduction of hydrogen on the (111) surface of a platinum electrode in the
presence of bisulfate.
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