Uncertainty relations
in the theory of open quantum systems
AIsar (@)
Department of Theoretical Physics
Institute of Physics and Nuclear Engineering
Bucharest-Magurele, Romania

Abstract

In the framework of the Lindblad theory for open quantum systems
we derive analytical expressions of the Heisenberg and Schrodinger gener-
alized uncertainty functions for a particle moving in a harmonic oscillator
potential. The particle is initially in an arbitrary correlated coherent state
and interacts with an environment at finite temperature. We analyze the
relative importance of quantum and thermal fluctuations and show that
the system evolves from a quantum-dominated to a thermal-dominated
state in a time which is of the same order as the decoherence time.
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1 Introduction

There is a large amount of papers concerned with the question of modifica-
tion and generalization of the uncertainty principle, in particular on modified
uncertainty relations which incorporate the effect of environmentally induced
fluctuations [1, 2, 3, 4]. These authors used quantum Brownian models consist-
ing of a particle moving in a potential and linearly coupled to a bath of harmonic
oscillators in a thermal state.

In the present work we study, in the framework of the Lindblad theory for
open quantum systems, the Heisenberg and Schrédinger generalized uncertainty
functions and the role of quantum and thermal fluctuations during the evolution
of a particle moving in a harmonic oscillator potential and interacting with an
environment. In Sec. 2 we remind the basic results concerning the evolution of
the damped harmonic oscillator in the Lindblad theory. Then in Sec. 3 we derive
analytical expressions for the finite temperature Heisenberg and Schrédinger
generalized uncertainty functions [5]. We consider the case of a thermal bath
and take the correlated coherent and squeezed states, in particular the coherent
states, as initial states. In Sec. 4 we discuss the relative importance of quantum
and thermal fluctuations in the evolution of the system towards equilibrium with
the aim of clarifying the meaning of quantum, classical and thermal regimes,
motivated by the necessity of understanding the process of decoherence via
interaction with the environment and the general problem of the transition
from quantum to classical behaviour [5]. In Sec. 5 we discuss our results and a
summary and concluding remarks are given in Sec. 6.

2 Lindblad master equation for damped harmonic
oscillator

It is generally thought that quantum dynamical semigroups are the basic tools to
introduce dissipation in quantum mechanics [6, 7]. In Markovian approximation



and for weakly damped systems, the most general form of the generators of
such semigroups was given by Lindblad [8]. This formalism has been studied
extensively for the case of damped harmonic oscillators [7, 9, 10, 11, 12] and
a phase space representation for the open quantum systems was given in Refs.
[13, 14]. In Lindblad axiomatic formalism the irreversible time evolution of the
open system is described by the following general quantum Markovian master
equation for the density operator p(t) [8]:
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Here H is the Hamiltonian operator of the system and V}, ij are operators
on the Hilbert space of the Hamiltonian, which model the environment. In the
case of an exactly solvable model for the damped harmonic oscillator, the two
possible operators V7 and V5 are taken as linear polynomials in coordinate ¢
and momentum p [7, 9] and the harmonic oscillator Hamiltonian H is chosen of
the general quadratic form
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With these choices the master equation (1) takes the following form [7, 9]:
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The quantum diffusion coefficients Dpy, Dyq, Dpq and the dissipation constant
A satisfy the following fundamental constraints [7, 9]: Dpp > 0,Dgq > 0 and
A2R°
DppDyq — D?)q 2 1 (4)
In the particular case when the asymptotic state is a Gibbs state pg(co) =
e~ % [Tre™ % | these coefficients can be written as [7, 9]
A+ p hw A—up h hw
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where T is the temperature of the thermal bath. In this case, the fundamental
constraints are satisfied only if A > p and

Dyq = Dpq =0, (5)
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We notice from this relation that if 7' = 0, then we must take pu = 0.
By using the complete positivity property of the Lindblad model, in Refs.

[7, 9] the following inequality was obtained for all values of ¢ > 0:
P

Dipp0gq(t) + Dgqopp(t) — 2Dpgopq(t) > 5 (7)
The inequality (7) represents a restriction connecting the values of the variances
044(t) and o, (t) and covariance opq(t) of coordinate and momentum with the



environment coefficients. In the case of a thermal bath, when the environment
coefficients have the form (5), the condition (7) becomes

opp(t) hw
[+ p)mwog,(t) + (A = u)zz—w] coth T > RA. (8)
We have found in Ref. [10] that the inequality (7) is equivalent with the gener-
alized uncertainty relation at any time ¢

Taa (O (8) — 03, (0) > ©)

if the initial values 044(0), opp(0) and op4(0) satisty this inequality for ¢ = 0. The
relation (4) is a necessary condition for the generalized uncertainty inequality
(9) to be fulfilled.

From the master equation (3) we can obtain the equations of motion for the
variances and covariance of coordinate and momentum [7, 9] which are needed
to calculate the uncertainty functions. Introducing the notations

Mwogq(t) 2mwD gy,
X(t)=| opp(t)/mw |, D= 2Dpp/mw |, (10)
Opq(t) 2Dp,

the solutions of these equations can be written in the form [7, 9]
X(t) = (Te"'T)(X(0) = X (00)) + X (c0), (11)

where the matrices T and K are given by (we consider the underdamped case
w > p and introduce the notation Q2 = w? — u?)
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and X (0c0) = —(TK T)D. In the case of a thermal bath with coefficients (5),
the asymptotic values (t = 00) of g44(t), opp(t), opq(t) reduce to [7, 9]
huw hmw hw

qu(OO) = m coth Zk—T, Upp(OO) = 2 coth i, qu(OO) =0. (13)

3 Generalized uncertainty functions
We consider a harmonic oscillator with an initial wave function
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where 044(0) is the initial spread, o,4(0) the initial covariance, and o4(0) and
0p(0) are the averaged initial position and momentum of the Gaussian wave
packet. As initial state we take a correlated coherent state (squeezed coherent
state) which is represented by the Gaussian wave packet (14) in the coordinate
representation with the variances and covariance of coordinate and momentum

hd Amw hr
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Here, 0 is the squeezing parameter which measures the spread in the initial
Gaussian packet and r = r(0), |r| < 1 is the correlation coefficient at time
t = 0. The correlation coefficient is defined as

_ Opq(t)
0= qu(t)‘fpp(t)- (16)

The initial values (15) correspond to a so-called minimum uncertainty state,
since they fulfil the generalized uncertainty relation with equal sign
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For § = 1 and r = 0 the correlated coherent state becomes a Glauber coherent
state. With the initial values (15) the condition (8) for ¢ = 0 takes the form
(e = hw/2kT):

1
One can eagsily show that
1
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It follows that if relation (6) is satisfied, then relation (18) is also satisfied (since
|r] < 1) and, therefore, for a given temperature T' and for any parameters ¢ and
r the inequality (6) alone determines the range of values of the parameters A
and p.

3.1 Heisenberg uncertainty function

For simplicity we set » = 0 in this Subsection. With the variances given by Eq.
(11) we calculate the Heisenberg uncertainty function U(t) = o4q(t)opp(t) for
finite temperature and obtain:
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For 4t = 0 and 6 = 1 this expression takes the form
2

Ut) = %{672/\'& + cothe(1 — e 2M)}2. (21)

Here the first term is of quantum nature, whereas the second term is of thermal
nature. Their contributions to the uncertainty of the system arise from quantum
and thermal fluctuations, respectively.

] + coth? €}. (20)



In the case of T' = 0 (cothe = 1) we have to take, according to Eq. (6),
= 0 and then we obtain from Eq. (20):
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We see in this expression that the leading term is given by %> /4 (the Heisenberg
contribution) followed, for squeezed states § # 1, by terms describing both
decay and oscillatory behaviour, representing quantum fluctuations alone (since
T =0). For § = 1 we obtain in the zero-temperature case Up(t) = h*/4.

3.2 Schrodinger uncertainty function

With the variances given by Eq. (11) we calculate now the Schrodinger gener-
alized uncertainty function o(t) = 044(t)o,,(t) — 02,(t) and obtain:
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When the initial state is the usual coherent state (6 = 1,7 = 0) and p = 0,
we obtain
h2
a(t) = Z{e’mt + cothe(1 — e 2M)}2, (24)

which is identical with Eq. (21) for U(%).

We consider now the particular case when the temperature of the thermal
bath is T = 0. Then we have to set also u = 0 (cf. Eq. (6)) and the uncertainty
function o(t) takes the following form from Eq. (23):
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We see that in this expression the leading term is given by 7 /4 (the Heisenberg
contribution) followed by terms representing quantum fluctuations alone (since
T = 0). Compared to Eq. (22), where these terms describe both decay and os-
cillating behaviour, in Eq. (25) the terms representing the quantum fluctuations
describe only a decay behaviour. When the initial state is the usual coherent
state (0 = 1,7 = 0), the uncertainty function takes again the most simple form
oo(t) = h?/4 for all times.

4 Transition from quantum mechanics to classi-
cal statistical mechanics

a)

t = 0 : When the initially uncorrelated condition is assumed valid, we
have o(0) =

U(0) = h*/4, according to Eq. (17).



b) t > A~! (very long times): o(t) and U(t) are insensitive to A, u,d and r
and approach

2
oBF = UBE = hz coth? e, (26)

which is a Bose-Einstein relation for a system of bosons in equilibrium at tem-
perature T (quantum statistical mechanics). Again T = 0 is the limit of pure
quantum fluctuations,

oo =Uy= — (27)

which is the quantum Heisenberg relation and high T (T >> hw/k) is the limit
of pure thermal fluctuations,

kT
MB _yME = (2L, (28)
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which is a Maxwell-Boltzmann distribution for a system approaching a classical
limit. The formula (26) interpolates between the two results (27) at 7' = 0 and
(28) at T > hw/k.

c) r = 0 : At short times (M < 1,0t < 1), we obtain from Egs. (20) and
(23) (where we take r = 0 and the correlated coherent initial state becomes a
pure squeezed state):

o(t) =U(t) = h;{l + 2[A\(6 + %) cothe + pu(d — %) coth e — 2A]t}. (29)

The time when thermal fluctuations overtake quantum fluctuations is

1

tqg = .
T 26 + Sy cothe+ (6 — L) cothe — 2)]

(30)

According to the theory of Halliwell [1, 2] and Hu [3, 4], we expect this time

to be equal to the decoherence time scale, which is not yet calculated for the

damped harmonic oscillator in the Lindblad model for open quantum systems.
i) At temperature 7' = 0 the uncertainty (29) becomes (u = 0)

2
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and
tqg = 1 32
S En) .

ii) In the case of high temperatures (we introduce the notation 7 = 1/¢), we
obtain
2

h 1 1
ot)=U(t) = Z{l + 2[A(6 + S)T + u(d — 5)7' —2A]t} (33)
and the time when thermal fluctuations overtake quantum fluctuations is
ta o (34)
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For 6 = 1 we obtain from Eq. (33)

h2
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independent of y and
hw
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d) r # 0: At short times (At < 1, < 1), we obtain from Eq. (23):

h2

o(t) = Z{l +2[A(0 + ) coth e+ p(d — )coth e — 2A]¢}. (37)
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The time when thermal fluctuations become comparable with quantum fluctu-
ations is in this case

1
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i) At zero temperature T' = 0, the uncertainty becomes (u = 0):
R 1
oo(t) = Z{l +2X(6 + ) 2)t} (39)
and
ta = : : (40)
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ii) At high temperature

h2
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and the time when thermal fluctuations overtake quantum fluctuations is

hw
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The expresions (29) of the uncertainty ¢ = U (for = 0) and (37) of the
uncertainty o (for r # 0) for short initial times evidently fulfil (by virtue of the
condition (18)) the uncertainty principle. From the expressions (30) and (38) we
observe that the time when the thermal fluctuations become comparable with
the quantum fluctuations is decreasing with the increasing of both temperature
T and dissipation A.

5 Discussion of results

a) One often regards the regime where thermal fluctuations begin to surpass
quantum fluctuations as the transition point from quantum to classical statis-
tical mechanics and identifies the high temperature regime of a system as the



classical regime. On the other hand, it is known that a necessary condition for
a system to behave classically is that the interference terms in its wave function
have to diminish below a certain level, so that probability can be assigned to
classical events [3, 4]. This is the decoherence process. The decoherence via
interaction with an environment views the disappearance of the off-diagonal
components of a reduced density matrix in some special basis as signaling a
transition from quantum to classical physics. In Refs. [1, 2, 3, 4] it was shown
that these two criteria of classicality are equivalent: the time when the quantum
system decoheres is also the time when thermal fluctuations overtake quantum
fluctuations. However the regime after thermal fluctuations dominate should
not be called classical. After the decoherence time, although the system is de-
scribable in terms of probabilities, it cannot yet be regarded as classical because
of the spin-statistics effects and has to be described by non-equilibrium quan-
tum statistical mechanics. Only after the relaxation time the system can be
correctly described by the equilibrium quantum statistical mechanics. The clas-
sical regime starts at a much later time. Only at a sufficiently high temperature
when the spin (Fermi-Dirac or Bose-Einstein) statistics can be represented by
the Maxwell-Boltzmann distribution function, can the system be considered in
a classical regime (see Egs. (26) — (28)).

b) The case of zero coupling, A = 0 and g = 0, corresponds to an isolated
harmonic oscillator taken as a closed quantum system. We find the Heisenberg
quantum uncertainty function for an initial squeezed state to be (see Eq. (20))

2 2
=P 36 e uny > (43)
This is the quantum uncertainty relation for squeezed states. As the coupling to
the environment goes to 0, the thermal fluctuations go also to 0 and the time-
dependent term is the result of quantum fluctuations only. For the unsqueezed
coherent state, § = 1, we recover the Heisenberg uncertainty relation U(t) =
h? /4. For the same case of zero coupling, the Schrédinger uncertainty function
(23) becomes o (t) = h?/4 for any correlated coherent initial state.

¢) In all expressions for the uncertainty functions obtained in the preceding Sec.
4, the terms depending on ¢ are functions of the initial spread and correlation
coefficient and represent the initial growth of thermal fluctuations, starting from
the pure quantum fluctuations at ¢t = 0. Using condition (18), we notice that for
short initial times the uncertainty increases with dissipation A and temperature
T. This is in contrast with other models studied in literature [1, 2, 3, 4], where
the uncertainty principle is violated on a short time scale as a consequence of
the well-known violation of the positivity of the density operator [2, 15]. In
fact, the uncertainty principle in our model is fulfilled not only for short times,
but for any time and temperature and for the full range of the squeezing and
correlation parameters. Indeed, cf. Eq. (9), by virtue of the complete positivity
property of the Lindblad model, the generalized uncertainty function o always
fulfills the uncertainty principle and for U(> o) this is also true.

The time dependence of the uncertainties U(t) and o(t) given by the dissi-
pative terms reflects the fact that the Lindblad evolution of the system is non-
unitary and is an expression of the effect of the environment. This is in contrast
with the usual Liouville-von Neumann unitary evolution, when the uncertainty
is independent of time, being invariant under unitary transformations.

U(t)



d) In the high temperature limit, the time t; when thermal fluctuations over-
take quantum fluctuations obtained in our model is of the same scale as the
decoherence time. The value of this time was determined in a series of papers
in quantum Brownian motion models for initial coherent states [16, 17].

e) The second time scale of importance is the relaxation time scale, t,.q =
A~ > t4, when the particle reaches equilibrium with the environment. After
this time, the uncertainty function takes on the Bose-Einstein form (26). At
high temperatures the system reaches the Maxwell-Boltzmann limit and the
uncertainty function takes on the classical form (28).

f) In the case of zero temperature, there are no longer thermal fluctuations and
the environmentally induced fluctuations are of quantum nature only, given by
terms describing both decay and oscillatory behaviour in the case of the uncer-
tainty function U (22) and only decay behaviour in the case of the uncertainty
function o (25).

6 Summary and concluding remarks

In the present paper we have studied the evolution of the one-dimensional har-
monic oscillator with dissipation within the framework of the Lindblad theory
for open quantum systems. We have considered the case of an environment con-
sisting of a thermal bath at an arbitrary temperature. The Gaussian correlated
coherent, squeezed and Glauber coherent states were taken as initial states. We
have derived closed analytical expressions of the Heisenberg and Schrédinger
uncertainty functions for the evolution of the damped harmonic oscillator for
different regimes of time and temperature, in particular in the limiting cases of
both zero temperature and high temperature of the environment, in the limit of
short times and long times and in the limit of zero coupling between the system
and environment. Besides the dissipation constant these expressions give the
explicit dependence on the squeezing parameter and the correlation coefficient.
The obtained uncertainty functions show explicitly the contributions of quan-
tum and thermal fluctuations of the system and environment. There are three
contributions to the uncertainty: i) uncertainty which is intrinsic to quantum
mechanics, expressed through the Heisenberg uncertainty principle (27), which
is not dependent on the dynamics; ii) uncertainty that arises due to the spread-
ing or reassembly (the reverse of spreading) of the wave packet, which depends
on the dynamics and may increase or decrease the uncertainty; iii) uncertainty
due to the coupling to a thermal environment, which has two components: dis-
sipation and diffusion (this latter is responsible for the process of decoherence);
this generally tends to increase the uncertainty as time evolves. In the Lindblad
model the uncertainty relations are fulfilled, while in some other models consid-
ered in literature, the uncertainty relations are violated at some initial moments
of time.

We have described the evolution of the system from a quantum pure state
to a non-equilibrium quantum statistical state and to an equilibrium quantum
statistical state and we have analyzed the relaxation process. We also found
the regimes in which each type of fluctuations is important. The three stages
are marked by the decoherence time and the relaxation time, respectively. The
regime in which thermal fluctuations become comparable with the quantum
fluctuations coincides with the regime in which the decoherence effects come into



play. In other words, the system evolves from a quantum-dominated state to
a thermal-dominated state in a time which is comparable with the decoherence
time calculated in the context of quantum to classical transitions [1, 2, 3, 4].

With this study one can understand the relation between quantum, ther-
mal and classical fluctuations. With the two characteristic times, namely the
relaxation time and the decoherence time to be determined in further studies
on environment-induced decoherence in the Lindblad model, one can give fur-
ther contributions in describing the role of quantum and thermal fluctuations
and, using the uncertainty relations, the transition from quantum to classical
physics. In this context we have shown recently [12, 18] that in the Lindblad
model the Schrodinger generalized uncertainty relation is minimized for all times
for Gaussian pure initial states of the form of correlated coherent states for a
special choice of the diffusion and dissipation coefficients. Such states are there-
fore the ones that suffer the least amount of noise and they are connected with
the decoherence phenomenon [17, 18], being the most predictable and stable
under the evolution in the presence of the environment.
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