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Abstract. We make a systematic study of the neutrinoless double-beta decay
matrix elements (ME) for several nuclei of experimental interest. The calculations are
performed with the second quasi random phase approximation (SQRPA) methods. A
better stability against the change of the s.p. basis used and a good fulfillment of
the Ikeda Sum Rule allow to reduce the uncertaintes in the values of the neutrinoless
ME predicted by the QRPA-based methods to about 50% from their calculated values.
Further, using the most recent experimental limits for the neutrinoless half-lives, we
derive new upper limits for the neutrino masses. These are in agreement with the
recent claim of experimental evidence for neutrinoless double-beta decay.

1 Introduction

The extensions of the proton-neutron random phase approximation method (pnQRPA)
beyond the quasiboson approximation (QBA) have received much attention in the last
decade in the context of nuclear structure calculations for the double-beta decay. The
pnQRPA which has been widely used in such calculations (for recent reviews see Refs.
[1]-[5]) has succeeded to reproduce the experimentally observed suppression of the two-
neutrino double beta (2v(33) decay matrix elements. By including the particle-particle
residual interaction between nucleons, which is attractive in the 1™ pn channel, besides
the particle-hole one which is repulsive, one can get arbitrarily small matrix elemetns
from the destructive interference between them [6]-[11]. However, the price paid is a
strong sensitivity of the matrix elements to the increase of the strength of these residual
interaction in the 17 channel and leads to the problem of fixing this parameter. Since
the Shell Model- (SM) based methods, despite of their recent progress [23] are not yet
able to treat medium heavy off-shell nuclei, which are the most part of the 55 decay



emitters, one further relies on QRPA-based methods. Thus, various refinements of
the original pnQRPA have been advanced but the most attention have received the
approaches which go beyond the QBA.

The first method which includes higher-order corrections to the pnQRPA was de-
veloped in Refs. [14] and applied to the evaluation of the 2v33 decay ME of %2Se.
In this approach the pnQRPA phonon operator and the transition ¥ operators have
been expressed as boson expansions of appropriate pair operators and there were kept
the next order terms from these series beyond the quasi boson approximation. Then,
this method, but keeping only the two-boson contributions to the wave function, was
called SQRPA and has been employed, with some numerical improvements, for similar
calculations for other isotopes as well as for transitions to excited states [15]-[16].

An alternative approach, called pnRQRPA, was developed in ref. [18] and then
used extensively for both 2v- and Ov — 8 decay modes, for transitions to g.s. and
excited states and for different nuclei [4], [19]-[21]. Within this method one tries a
partial restoration of the Pauli exclusion principle which is discarded in the pnQRPA.
This is done by taking into account the next terms in the commutator expression of
the like-nucleon operators involved in the derivation of the pnQRPA equations. The
commutator is replaced by its expectation value in the RPA (correlated) g.s. and this
leads to a renormalization of the relevant operators and of the forward- and backward-
going QRPA amplitudes as well. The pnRQRPA method has been further refined by
the inclusion of pn pairing interactions besides the proton-proton and neutron-neutron
ones [20] and this method, called full-lRQRPA, was widely used 3/ decay calculations
[20], [22]-

Both methods, by the inclusion of higher-order corrections to the QBA, display a
common feature, namely, the ME become more stable against g,, and the point where
the pnQRPA solutions become imaginary is shifted towards the region of unphysical
values of this parameter.

However, within the pnRQRPA the Tkeda Sum Rule (ISR) is not conserved by a
significant amount. Another drawback of this method would be a rather large depen-
dence of the calculated ME upon the size of the s.p. basis, as it was shown in some
previous papers [20]-[21], [33]. These shortcomings have not been found in a significant
proportion in the second-QRPA (SQRPA) method [16], [33] for 2v33 decay calcula-
tions. Since calculations of neutrinoless (0v38) ME with SQRPA have not been done
until present, it of interest to see that features also hold for this decay mode.

In this article we make a computation of the nuclear Ov33 decay ME with the
SQRPA method for the experimentally interesting nuclei ®Ge, 82Se, %Zr, %Mo,
"6, 128.130T¢ and 3% Xe. The main goal is to reduce the uncertainties found in the

QRPA-based methods in the prediction of these matrix elements, which are related to



the change of the s.p. basis and the conservation of the ISR. For that we used two
different s.p. basis and fixed the parameters needed in the numerical procedure in the
same manner as it was done in our work [33], where similar calculations with the other
QRPA-based methods are also performed. By comparing the present calculations with
others found in the literature we estimate the predictive power of the QRPA methods
concerning the ME for the neutrinoless decay mode. Then, using the most recent
Ov 35 half-lives reported in the literature, we deduce new limits for the neutrino mass
parameter.

2 Formalism

In the QRPA-based methods the excitation operator can be defined in the following

general form:
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where k < [ if y = ¢/, X and Y are the forward- and backward-going QRPA amplitudes

and A, AT are the bifermion quasiparticle operators coupled to angular momentum J
and projection M:
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N is a normalization constant, which differs from unity only in case when both quasi-
particles are in the same shell [19], u, ' = 1,2 and 1 =protons, 2 =neutrons. Using for
instance the equation of motion method one can derive the pnQRPA equations which

may be written in the matrix representation as follows:
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Here the Q27 are the QRPA excitation energies for the mode J”.
The simplest way to calculate the A, B and U matrices is to adopt the so-called
QBA, as is done within the pnQRPA method, i.e. the quasiparticle operators A, Af
are assumed to behave like bosons and satisfy thus exactly the boson commutation

relations:
(A (k, 1, 7, M), ALy, (K, J, M) =
N(kua lV)N(kI,U"a lIVI) (5uu’5uu’5kk’6ll’ - 5uu’5uu’5lk' 5kl’(_)jk+jl7‘]) (6)

In the SQRPA method the higher-order corrections to the QRPA are included by
expanding the A', A together with the quasiparticle-density dipole operators into a
series of boson operators, from which one retains the next terms beyond the QBA [14]:

Al (pn) = ; (AL, (k) + AQRVTE, (k) (7)

Bl (pn) = > (Bizi ()DL (k)Th (ko)) + Bitie) (om) [Ty (k)T (Ro)]1) — (8)

where
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Biu(pn) = ()"~ By, (pn) (9)

The boson expansion coefficients A0, A0 B20)  B(0.2) are determined so that
the equations (7)-(8) are also valid for the corresponding ME in the boson basis. Fur-
ther, in the quasiparticle representation, the transition 8% operators can also be ex-
pressed in terms of the dipole operators A, and By,:

B, (k) = akA{u(k) + 0p Ay, + nkB}‘u(k) + kB,
Br (k) = — (0xAlL (k) + OxAry + 7B, (k) + By, ) (10)
where
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For consistency, by using (7)-(8) their expressions are also obtained in the same order
beyond quasi boson approximation. Their complete expressions can be found in Ref.
[14]. It is important to stress that these expressions contain, besides the one-boson
terms present in the QBA, higher-order contributions which are proportional to prod-
ucts of two-boson operators. Thus, in the SQRPA method, the higher-order corrections
to the pnQRPA are consistently introduced both in the wave functions (through the
phonon operators), and in the expressions of the 3% operators.

For the Ov33 decay we assume in this paper only the mass mechanism and so the
half-life can be written in the factorized form as follows(see e.g. [2]:

ris] ™ = o (222) 12)
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where (m,) is the effective neutrino mass and
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ga
F” is the phase-space integral and M. and MY are Gamow-Teller and Fermi matrix
elements.
We also mention that in all models the Ikeda sum rule must be fulfilled, i.e.:

S- =S4 = Zul(05 | Bl L) P = [l BRl0g, ) P = Ein (=)™ (055 [Brs B [0g.5.) =
=3(N - 2) (14)

3 Numerical results

In the calculations of the neutrinoless ME for 2 Se, %6Zr, 19Mo, 118Cd, 128Te, 130T
and 3% Xe, for the Hilbert space used to generate the s.p. basis we made two choices.
For the nuclei with A < 100 we included: i) the full (3 — 4)hw oscillator shells and
ii) the full (2 — 4)hw oscillator shells. For the nuclei with A > 100 the two s.p. basis
include: i) the full (3 — 5)Aw oscillator shells and ii) the full (2 — 5)Aw oscillator shells.
From here on we will call (s) the small basis (i) and (1) the large basis (ii) and these
indices are used in tables and figures to distinguish between calculations performed
with the two basis.

The s.p. energies were obtained by solving the Schriodinger equation with a Coulomb-
corrected Wood-Saxon potential. The A-pole nucleon-nucleon residual interactions were
taken as Brueckner G-matrix derived from the Bonn-A one-pion-exchange potential.



The quasiparticle energies and the BCS occupation amplitudes were calculated by
solving the HFB equations with proton-proton (pp) and neutron-neutron (nn) pairing
correlations. The calculations were performed separately for the initial and final nuclei
participating in the 8 decay and for the two basis sets. Also, we included in the model
space the states with all multipolarities J". The renormalization constants were chosen
as follows: g,, = 1.0 for all the multipolarities, except the 17 channel for which it was
left as a free parameter, and g,, = 1.0 for all the multipolarities except the 2* channel
where it was fixed to 0.8, since for larger values the p-h interaction in this channel is too
strong producing the collapse of the RPA procedure. For deriving the neutrino mass,
the g,, parameter was fixed from our two-neutrino calculations performed with the
SQRPA method [33] and according to the most recent corresponding half-lives found
in the literature. We study the dependence of the neutrinoless matrix elements upon
the g,, parameter, for the two choices of the s.p. basis, for the nuclei investigated. One
observes that the matrix elements display a weak dependence on the size of the s.p.
basis used and this is valid for all the nuclei. In the vicinity of the fixed value of g,, the
differences between calculations, performed with the two different basis, for the same
nucleus, are less than 30%. Thus, one may conclude that the prediction of the ME
for the neutrinoless decay mode given by the SQRPA, related to the use of different
s.p. basis, is reasonably good. Distinctively, in [20] a significant dependence (up to
a factor 3) was found for similar calculations performed with pnQRPA, RQRPA and
fulll-RQRPA. Close values between the ME calculated with the fullRQRPA method
using different basis sets were obtained only when the basis include more than three full
oscillator shells, which might be in disagreement with one of the basic approximation
made within the RQRPA method. Indeed, when one enlarges the starting s.p. basis
too much (i.e. if one includes more than 2-3 full oscillator shells), one may expect that
the overlap matrix U, appearing in the QRPA equation (3) can no more be assumed,
with a good approximation, to be diagonal, and so the RQRPA equations can no more
be obtained in a QRPA-type closed form.

Then, we checked the Ikeda sum rule within SQRPA and found that it is conserved
with good accuracy. Indeed, the deviations from the exact fulfillment, for all the nuclei,
are within a few percent. By contrast, we found deviations up to 21% within RQRPA
methods [33]. An explanation of the good degree of conservation of the ISR within
the SQRPA would be the presence in the expressions of the transition operators of
additional terms as it was shown before. These higher-order terms, corroborate with
the improved expression of the SQRPA wave function, in the calculation of the left
hand side of Eq. (14) and give positive contributions to the fulfillment of the ISR.

These two features, e.g. a more stable behavior of the results against the change
of the s.p. basis and the fulfillment with good approximation of the ISR give more



confidence in the values of the ME obtained with the SQRPA method.

By comparing the results obtained in this paper with similar results obtained with
other methods, one can estimate more precisely the accuracy in the prediction of the
neutrinoless matrix elements with the QRPA-based methods.

For that in table 1 we give the values of the neutrinoless ME calculated with different
methods. One observes that the discrepancies between the values obtained with recent
pnQRPA, RQRPA and SQRPA calculations, are generally within a range of 50%.
There are however two exceptions e.g. the values for %Mo, calculated with pnQRPA
in Ref. [12], and for "®Ge, calculated with the fullRQRPA in Ref. [20] which are
smaller by factors of 2-3 as compared with other calculations. One also observes that
the values obtained with the SM are smaller by factors up to two than similar QRPA
calculations. This might be understood by the poor conservation of the ISR within this
method( about 50% from the beta strength is lost). Thus, one can estimate that with
the present calculations the uncertainty in the prediction of the ME for the neutrinoless
decay mode, by the QRPA-based methods may be reduced to about 50%, if we relate
the discrepancies to the non-conservation of the ISR and to the change of the s.p.
basis. Since the ME and the neutrino mass parameter enter the half-life formulae at
the same power, the same amount of uncertainty is also expected for the neutrino mass
predictions.

It should be mentioned that uncertainties in the predictions of the neutrinoless
ME might also come from other sources. Recently, it was shown that the inclusion
of nucleon currents in the neutrino mass mechanism can reduce the ME by factors of
25-30% [22]. Also, a consistent treatment of the BCS and RQRPA vacua, might give
additional corrections [21].

4 Conclusions

Concluding, we have computed the Ov33 decay matrix elements, for the first time, with
the SQRPA method for the experimentally interesting nuclei: "®Ge, 82Se, % Zr % Mo,116Cd,' 2 Te,
130T¢ and 3¢ Xe using two different choices of the s.p. basis. We found a weak de-
pendence of the matrix elements on the s.p. basis used. Also, the ISR was checked
and found that it is fulfilled with good accuracy within the SQRPA method. Both
these features give us more confidence in the results. By comparing the present results
with the results obtained with other QRPA-based methods and with the SM, one can
estimate more reliably the predictive power of the QRPA-based methods concerning
the values of the neutrinoless matrix elements. The uncertainty related to the non-
conservation of the ISR and to the change of the s.p. basis can be settled within 50
%. The same uncertainty then holds for the neutrino mass predictions. Finally, using



the most recent experimental limits for the neutrinoless half-lives found in literature

we deduce new limits for the neutrino mass parameter for each case.
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(MY  ™Ge %8¢ %Zr ™Wifg 5Cd ®T¢ ¢ 1Pxe |
SQ 321(1) 354() 2.12() 423(1) 229() 2.85() 2.42() 0.98()
3.78(s) 4.13(s) 2.70(s) 4.51(s) 2.67 (s) 3.38(s) 2.53(s) 1.03(s)
FRQ 1.86 4.22 2.47 3.28 3.19 0.96
20]
FRQ 2.43(1) 2.63(1) 2.42() 4.11(1) 2.35(1) 2.88 (1) 2.61(1) 0.89(1)
33]  3.73(s) 4.15(s) 2.99(s) 4.35(s) 2.62 (s) 3.75(s) 3.49(s) 0.99(s)
Q 4.25 3.99 2.94 1.37 3.38 4.49 3.61 1.65

[12]
Q 336 306 3.04 386 338 112
[13]
SM 157  1.97 0.65
23]

Table 1: The neutrinoless matrix elements calculated with SQRPA (SQ) (present work)
and with other methods: pnQRPA (Q), pnRQRPA (RQ), fullRQRPA (FRQ) and
Shell Model (SM). In parenthesis are indicated the references where the calculations
are taken from. The indices (1) and (s) refer to the calculations performed with a large
or small s.p. basis, respectively



