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C.01. Nuclear mean field:

In nuclei the selfconsistent potential “seen” by one nucleon
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Spherical harmonic oscillator
IS a good approximation of the mean field describing
low lying single particle states

Potential is given by:

1 1 0]
V(r)= —ma)z(x2 +y2 +z2) = _—mo’r’ = _q2
2 2 2
_r
q=—
Io
. h
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The energy spectrum is the sum of three one-dimensional eigenvalues:
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where N=2n+/=0,1,2,3,... is called principal quantum number,
n=0,1,2,...N/2 radial quantum number and
I=0,1,2,...,N angular momentum



Realistic mean field potential
for protons and neutrons is given by a dependence
between the square well and ho.
Woods-Saxon dependence is the most used potential.
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Spin-orbit interaction
IS very strong in nuclei
and it is peaked on the nuclear surface
(is proportional to the derivative of the central potential)
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The expectation value .
of the scalar product ] = l+s
<(l.s)> can be derived .
by using the expression: ] = l.1+s.s+ 2(1.8)
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Spin-orbit splitting

Total spin has two values : Thus, the spin-orbit scalar product becomes:
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Eigenfunctions in the nuclear mean field
with a spin-orbit coupling

The single particle wave function is called spin-orbit harmonics
and it can be written by using the ket notation, or the coordinate form:
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where R((r) is the radial wave function,

which can be expanded in terms of eigenfunctions
of the spherical ho potential R, (r).

Y, is the angular harmonics and x,,the spin function.



Single particle eigenfunction

ngjm (r’ S)

Is characterized by:
€. energy, or alternatively:
n: number of nodes of the radial wave function,
which can be expanded in terms of ho eigenfunctions.
Thus, n coincides with the radial quantum number
of the largest ho component
| angular momentum
J: total spin

m: spin projection

Notice that the parity is given by the (-)' rule



C.02. Shell model

Magic numbers separating the shells appear
due to the spin-orbit splitting of eigenvalues
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Spherical shell model scheme

STt
rﬁ-m -
- with spin arbit
feem .@
H"‘“H 16 184
i &
45 2 184 = -I;::: 2duz 3 164
[ TR Y —
T o :Iﬁ-ﬁﬂ—-:"._'_'___:‘___._.—llm T E !iﬁ
“ 18 1!.-5—-:,_._.-1-‘*‘:2_*3.1“ 21
ki 6 138 m— Ewz ’ 1 I3 135
~ (129
=i ! 14 126
112
3p & 112 —— 3puz E Hg
2 18 (06 m—— T N ity & 108
kil 5 100
(52) I o 52
Ih 2 sre—=T
"= 1h 2 8z
. s 79 __'__:z,;m*”* % i
&d ] I ——== ¥ . £ B
- ! @ e 1T E &J
I_ —— 1 — Ll
B 8 s—=T @ t
) = i Py
2p E AW — = iy Pliz 6 a8
i |. 14 M e— T a2 4 32
@ B
2 A M0 I & 0
14 TR i 1z Z 16
Ip | 6 8 —— === lpp2 ] z A
T par i &
@ ©0)
1= 2 2 —_ 15y Z 2

220 & I + 1)

2+ 1ZiE +

Energy level scheme

20 K S
(as in ATOM)

=012



The last nucleon of an odd-even (even-odd) nucleus
determines the nuclear properties
(spin, quadrupole and magnetic moments)
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Shell Model
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Exclusion Principle: the extra
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C.03. Many body dynamics
Identical particles

The probability of a system with several particles remains unchanged
with respect to the permutation of particle coordinates:

2 2
“P(...,ri,...,rj,...)‘ :“P(...,rj,...,rl.,...)‘

Therefore the wave function can be symmetric or antisymmetric:

Y(.r, ) =2Y(, 1500 T000)

Connection between symmetry and statistics

The symmetric wave function describes a system of bosons
with integer spins, like for instance alpha particles (2 protons+2 neutrons).
The antisymmetric wave function describes a systems of fermions
with half-integer spins, like for instance protons, neutrons or electrons.



Independent particle motion

The wave function of independent particles is a symmetrised or
antisymmetrised normalized product of single particle wave functions.
For instance a system of N independent fermions is described
by a normalized determinant (called Slater determinant):

1

N Wy (Y (). wy (ry)

W (e ly) =

Lines correspond to states.
Rows correspond to coordinates.

Pauli principle

Two fermions cannot occupy the same state
(if two lines are equal then the determinant vanishes).



Second quantization
IS a representation describing a system with a variable number of particles.
We will give basic details for fermions.
A normalized determinant describing a system of N fermions
can be written as a product of N creation operators
acting in the space of occupation numbers, called “Fock space”.

“PN> = ajvajv—r"aﬂ O>

where |0> is called vacuum state with O particles and
a,* is the creation operator on the k-th state.

The annihilation and creation operators obey the following anticommutator:

aa; +aa, = 51.1.

The expansion of a determinant of the order N in terms of the elements
of the first line multiplied by determinants of the N-1 order is written as follows:

‘\PN>°<3N‘\PN—1>



One body operator
like for instance number of particle operator
or electric multipole transition operators
has the following representation:

T:Zaj<i|f| j>€1]
ij

l.e. is the sum of transitions annihilating the state j

and creating the state i

Two body operator
like for instance potential energy operator
has the following representation:

V= U;””@ V| kl>a a,

.e. is the sum of transitions annihilating the states k/ k
and creating the states jj. It is represented
by the right diagram from right to the left.



C.04. Hartree-Fock (HF) mean field

In the lowest approximation each nucleon moves independently
in the mean field created by the other N-1 nucleons.

The mean field Hartree-Fock equations are derived
by using the variational principle:

5<\y|ﬁ|w>=o

where the Hamiltonian is given by
the sum between kinetic and potential components:
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One obtains the following system of equations for
single particle states:

H,.|k)=¢k)
with the selfconsistent nuclear mean field (MF):
<k|ﬁMF |k>z<k|T| k>+2(<kn|\7 | kn>—<kn|\7|nk>)
direct (Hartree) term exchange (Fock) term

HF equations are solved by iterations:
The eigenstates |k> are used to compute the
HF Hamiltonian, which is used to obtain new eigenstates,
until the convergency is achieved.



In the spherical nuclear mean field
each spherical level is filled by 2j+1 nucleons
with different projections
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C.05. Thomas-Fermi model

describes a gas if independent fermions within the semiclassical limit.
The space phase is defined by k (or p) and r coordinates.
The “elementary quantum cel” of the phase space is:
AKAr - (2112 or ApAr - (21h)3
The density of states at temperature T=0 is:
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where we considered 2 particles with level
opposite spins on each state

and p. is the maximal (Fermi) momentum

corresponding to the Fermi level (right figure).
Thus, Fermi momentum becomes:
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For N=Z=A/2 one obtains: ppp = P =

By using the standard values
r,=1.2, hc=197.3 MeV.fm, m c?=938.9 MeV,

one obtains the Fermi kinetic energy

2
E,, =— —F, =2 ~33Mev
2m, 2m,

This energy corresponds to the kinetic energy of the highest
occupied orbit (smallest binding energy).
The average energy / nucleon is:

PF
J Ekindp 3 p2 3
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C.06. Residual interaction

acts among nucleons in the mean field.
The total Hamiltonian is the sum between
the mean field and residual terms:

H — HMF T Vres

b P (cosBy) Multipole expansion of the
residual interaction is given by

\A/res (r,1) = ZVI (r,1,)B (cosd,)
l

.._,1/|_, where P, is the Legendre polinomial

The most important terms of the
10 residual interaction are:
|I=0 : monopole pairing interaction
|=2 : quadrupole-quadrupole interaction




C.07. Pairing interaction
Low-lying states in even-even nuclei are separated
by an energy gap from the ground state, like in Sn isotopes below
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Monopole pairing coupling explains this gap

Pairing wave function is given
by the coupling of two single particle states
to the total angular momentum O:

W (1) =y, () Oy, (1)), = J—Z( Y (W (E)

m==

where l//nljm (l‘k) Is the wave function of the k-th nucleon
In the spin-orbit coupling.
m A
The pictorial representation
of the pairing coupling is given (
by two nucleons rotating )
In opposite directions
! -m




Residual monopole particle-particle (p-p) interaction
describes pairing correlations.

Monopole pairing Hamiltonian
for protons/neutrons is:

Here ¢ are single particle energies

provided by the mean field
and A is the Lagrange multiplier
taking care on the conservation

of the number of particles in nucleus.

G is the pairing strength.
We used a
short hand notation:

(nl)) = J)

H,=) (¢,-AN,-G) PP,
J jk
where:

N, =) a4,

Zﬁmﬁ W)



The quasiparticle is a superposition of a creation and annihilation
operators (Bogoliubov-Valatin transformation)

a,=ua, +v.a_ (=)™

Jm

It approximately diagonalizes the pairing Hamiltonian:

I\+/\

HP%ZEJ.O(J.O(J.
J

Ej:\/(gj—)u)2+A2

Here E; s the quasiparticle energy.
Close to the Fermi level, where €=A, one has E=A

and therefore 2A is the energy necessary to break
a pair of particles in even-even nuclei.

Ground state (BCS vacuum) ~ _
is defined by: &,|BCS)=0



Gap parameter describes superfluid nuclei
between closed shells

A= GZ<BCS|13;|BCS>
j
Distribution of occupation probabilities
Normal system (closed shell) Superfluid system
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Fermi level




Proton pairing gap versus Z
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C.08. Collective excitations
The superposition of pairs between particle (croses) and
hole (open circles) states
describes collective excitations in nuclei

Elementary particle-hole (p-h) excitation: ﬁ;ﬁh ‘ q"gs>




Types of p-h collective excitations:
1) low-lying surface vibrations
2) giant resonance (motion of protons against neutrons)

Residual Hamiltonian describing these excitations
IS given by the multipole-multipole interaction Q,Q,.

Quadrupole term with A=2 describes low-lying states.
Dipole term with A=1 describes giant dipole resonance.

:Z‘gjﬁj _F(QA ®QA)0

where :

N, =) a4,



Wave function is a
collective p-h excitation,
l.e. a superposition of

various elementary p-h terms P

(Tamm-Dancoff transformation) h

f‘;,u (n) — Z X;\h (n)(a; ®ah))\p‘q’gs>

ph

This wave function
diagonalizes the Hamiltonian

H, > Y oI, (I, (n

where n denotes the collective
excitation (eigenmode)



Distribution of collective excitations
for various multipolarities versus energy
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C.08. Collective model

Shell Model assumes independent
behaviour of nucleons

Liquid-Drop Model assumes the
opposite

Collective Model takes features from
both.

Nucleons in unfilled subshells move
independently in a net potential created
by the filled ‘core’ nucleons (as in
Shell Model)

The potential 1s allowed to deform, as
in a liquid. (The Shell Model assumes a
static, spherically symmetric potential).

“Valence nucleons™



Nilsson mean field for single particle states
In the deformed Iintrinsic system

Single particle energy versus deformation Deformed Hamiltonian in the
- === intrinsic system, connected
- ..3 a8 3 to the nuclear symmetry axis,
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Effect of the deformation: )
In axially symmetric nuclei 2
spherical levels are splitted 0

into (2j+1)/2 deformed levels,
as for instance B(E2:2->0)
values from various 2* levels
(right figures) 12
_ 10
The lowest level in the deformed
nucleus 24°Pu has E,=43 keV

and the strongest transition.

(c) corresponds to a spherical approach,
(d) corresponds to a deformed approach.
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