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C.01. Nuclear mean field:
In nuclei the selfconsistent potential “seen” by one nucleon

 is created by all other nucleons

Finite 
square well

Harmonic 
oscillator 
potential

Realistic
Wood-Saxon 

potential

Various shapes
of the mean field



Spherical harmonic oscillator
is a good approximation of the mean field describing

low lying single particle states
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where the ho length parameter is:

The energy spectrum is the sum of three one-dimensional eigenvalues:
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where N=2n+l=0,1,2,3,… is called principal quantum number,
n=0,1,2,…N/2  radial quantum number and

l=0,1,2,…,N  angular momentum

Potential is given by:



Realistic mean field potential
for protons and neutrons is given by a dependence

between the square well and ho.
Woods-Saxon dependence is the most used potential.



Spin-orbit interaction
is very strong in nuclei 

and it is peaked  on the nuclear surface
(is proportional to the derivative of the central potential)
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The expectation value
of the scalar product
<(l.s)> can be derived
by using the expression:



Spin-orbit splitting
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Total spin has two values :         Thus, the spin-orbit scalar product becomes:



Eigenfunctions in the nuclear mean field
 with a spin-orbit coupling
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The single particle wave function is called spin-orbit harmonics
and it can be written by using the ket notation, or the coordinate form:

where Rl(r) is the radial wave function, 
which can be expanded in terms of eigenfunctions

of the spherical ho potential Rnl(r).
Yl  is the angular harmonics and χ1/2 the spin function.



            is characterized by:

ε: energy, or alternatively: 
n: number of nodes of the radial wave function,
which can be expanded in terms of ho eigenfunctions.
Thus, n coincides with the radial quantum number
of the largest ho component

l: angular momentum

j: total spin

m: spin projection

Notice that the parity is given by the (-)l rule

Single particle eigenfunction 
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C.02. Shell model 
Magic numbers separating the shells appear 
due to the spin-orbit splitting of eigenvalues

Spectroscopic
notation of
of levels:

nlj

n: radial q.numb.
j: total spin
l=0→s
l=1→p
l=2→d
l=3→f
l=4→g
l=5→h



Spherical shell model scheme



The last nucleon of an odd-even (even-odd) nucleus 
determines the nuclear properties 

(spin, quadrupole and magnetic moments)





C.03. Many body dynamics
Identical particles
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The probability of a system with several particles remains unchanged
with respect to the permutation of particle coordinates:
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Therefore the wave function can be symmetric or antisymmetric:

Connection between symmetry and statistics

The symmetric wave function describes a system of bosons
with integer spins, like for instance alpha particles (2 protons+2 neutrons).

The antisymmetric wave function describes a systems of fermions
with half-integer spins, like for instance protons, neutrons or electrons.



Independent particle motion

The wave function of independent particles is a symmetrised or
antisymmetrised normalized product of single particle wave functions.

For instance a system of N independent fermions is described
by a normalized determinant (called Slater determinant):
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Lines correspond to states.
Rows correspond to coordinates.

Pauli principle

Two fermions cannot occupy the same state
(if two lines are equal then the determinant vanishes).



Second quantization
is a representation describing a system with a variable number of particles.

We will give basic details for fermions.
A normalized determinant describing a system of N fermions

can be written as a product of N creation operators
acting in the space of occupation numbers, called “Fock space”.
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where |0> is called vacuum state with 0 particles and
 ak

+ is the creation operator on the k-th state.
The annihilation and creation operators obey the following anticommutator:

The expansion of a determinant of the order N in terms of the elements
of the first line multiplied by determinants of the N-1 order is written as follows:



One body operator
like for instance number of particle operator

or electric multipole transition operators
has the following representation:
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i.e. is the sum of transitions annihilating the state j
and creating the state i

i.e. is the sum of transitions annihilating the states kl
and creating the states ij. It is represented
by the right diagram from right to the left.

Two body operator
like for instance potential energy operator

has the following representation:
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C.04. Hartree-Fock (HF) mean field

0|ˆ|  H

In the lowest approximation each nucleon moves independently 
in the mean field created by the other N-1 nucleons.

The mean field Hartree-Fock equations are derived 
by using the variational principle:
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where the Hamiltonian is given by
the sum between kinetic and potential components:



kk kMF Ĥ

One obtains the following system of equations for
single particle states:
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with the selfconsistent  nuclear mean field (MF):

HF equations are solved by iterations:
The eigenstates |k> are used to compute the

HF Hamiltonian, which is used to obtain new eigenstates,
until the convergency is achieved.

direct (Hartree) term    exchange (Fock) term



In the spherical nuclear mean field
each spherical level is filled by 2j+1 nucleons

with different projections

Fermi level
corresponds

to the last
occupied level

Ground state is a Slater determinant
of HF eigenstates

obeying the Pauli exclusion principle



C.05. Thomas-Fermi model
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describes a gas if independent fermions within the semiclassical limit.
The space phase is defined by k (or p) and r coordinates.

The “elementary quantum cel” of the phase space is:
ΔkΔr→(2π)3     or    ΔpΔr→(2πħ)3

The density of states at temperature T=0 is:

where we considered 2 particles with
opposite spins on each state

and pF is the maximal (Fermi) momentum
corresponding to the Fermi level (right figure).

Thus, Fermi momentum becomes:

where:
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For N=Z=A/2 one obtains:

By using the standard values 
r0=1.2, ħc=197.3 MeV.fm, mNc2=938.9 MeV,

one obtains the Fermi kinetic energy

This energy corresponds to the kinetic energy of the highest
occupied orbit (smallest binding energy).

The average energy / nucleon is:
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C.06. Residual interaction 
acts among nucleons in the mean field.

The total Hamiltonian is the sum between 
the mean field and residual terms:

resMF VHH ˆˆˆ 

Multipole expansion of the
residual interaction is given by

where Pl is the Legendre polinomial

The most important terms of the 
residual interaction are:
l=0 : monopole pairing interaction
l=2 : quadrupole-quadrupole interaction
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C.07. Pairing interaction
 Low-lying states in  even-even nuclei are separated

by an energy gap from the ground state, like in Sn isotopes below



Monopole pairing coupling explains this gap
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Pairing wave function is given
by the coupling of two single particle states 

to the total angular momentum 0:

where is the wave function of the k-th nucleon
in the spin-orbit coupling.

m

-m

The pictorial representation
of the pairing coupling is given

by two nucleons rotating 
in opposite directions
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Monopole pairing Hamiltonian

for protons/neutrons is:

Here εj are single particle energies

provided by the mean field

and λ is the Lagrange multiplier

taking care on the conservation

of the number of particles in nucleus.

G is the pairing strength.

We used a

short hand notation:

(nlj)→j)

Residual monopole particle-particle (p-p) interaction 

describes pairing correlations.



The quasiparticle is a superposition of a creation and annihilation
 operators (Bogoliubov-Valatin transformation)
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Ground state  (BCS vacuum)
is defined by: 0ˆ BCSkα
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It approximately diagonalizes the pairing Hamiltonian:

Here  Ej is the quasiparticle energy.
Close to the Fermi level, where εj≈λ, one has Ej≈Δ
and therefore 2Δ is the energy necessary to break 

a pair of particles in even-even nuclei.



Gap parameter describes superfluid nuclei
between closed shells
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Fermi level

Normal system (closed shell) Superfluid system

Distribution of occupation probabilities
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Proton pairing gap versus Z



C.08.  Collective excitations
The superposition of pairs between particle (croses) and

hole (open circles) states
describes collective excitations in nuclei

gshp Ψaa ˆˆ 
Elementary particle-hole (p-h) excitation:



Types of p-h collective excitations:
1) low-lying surface vibrations

2) giant resonance (motion of protons against neutrons)
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Residual Hamiltonian describing these excitations 

is given by the multipole-multipole interaction QλQλ.

Quadrupole term with λ=2 describes low-lying states.

Dipole term with λ=1 describes giant dipole resonance.
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This wave function

diagonalizes the Hamiltonian

Wave function is a
collective p-h excitation,

i.e. a superposition of
various elementary p-h terms

(Tamm-Dancoff transformation)
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where n denotes the collective

 excitation (eigenmode)



Distribution of collective excitations
for various multipolarities versus energy

Giant
resonance

Low-lying
 vibrational state



C.08. Collective model



Nilsson mean field for single particle states
in the deformed intrinsic system
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Single particle energy versus deformation Deformed Hamiltonian in the
intrinsic system, connected

to the nuclear symmetry axis,
is given by the m=0 component

of the quadrupole operator:

Each deformed level
can accommodate two
nucleons with opposite
spin projections +m, -m



Effect of the deformation:

In axially symmetric nuclei
spherical levels are splitted 
into (2j+1)/2 deformed levels,
as for instance B(E2:2->0) 
values from various 2+ levels
(right figures)

The lowest level in the deformed
nucleus 240Pu has E2=43 keV 
and the strongest transition.

(c) corresponds to a spherical approach,
(d) corresponds to a deformed approach.
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