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It is believed that quantum information processing and quantum
communication have the potential to revolutionize many areas of science and
technology. These emerging research fields exploit fundamentally new modes
of computation and communication, because they are based on the physical
laws of quantum mechanics instead of classical physics. They hold the promise
of huge computing power beyond the capabilities of any classical computer,
they guarantee absolutely secure communication, and they are directly linked
to emerging quantum technologies, such as, for example, quantum based
sensors and quantum metrology. From the point of view of the physicist, the
efforts towards the understanding of the mentioned physical processes opens
two main research directions:

(1) The intrinsic features of the physical information: The physical information is
always connected to specific physical representations, its generation is related
to the existence of an underlying support, while its transportation is secured by
a carrying vector. The increase of the bit densities and of their access speeds
are straightforward consequences of the decrease of the dimensions of the

physical systems involved in the information processing.

(2) Carrier vectors for the information transmission: An important achievement
during the past decade was represented by the discovery of means of
distortionless transmission of the information at large distances and with high
data transmission speeds. At present, the most efficient way for the
information transmission at large distances is through monomode optical
fibers, where temporal optical solitons, as carriers of information, can
propagate in a distorsionless, robust way. Intensive fundamental studies on

different kind of optical solitons (temporal, spatial and spatiotemporal ones) by
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various research groups all-over the world, including one of the participants to
this research project, followed by advanced material studies, have resulted in a

rapid progress of this research area.

The project “Fundamental studies in physics of quantum information and in
nonlinear optics of few-cycle solitons” PN-I/I-ID-PCE-2011-3-0083 (contract
53/05.10.2011 ), financed by the Funding Agency UEFISCDI, Ideas Program, had
the following objective in the period October 2011-December 2011:

Study of new polarization effects of few-optical-cycle solitons by considering the
vectorial nature of the optical field.

It is well known that ultrashort optical pulses with duration of merely a few
femtoseconds find diverse applications in the area of light-matter interactions,
high-order harmonic generation, extreme nonlinear optics [M. Wegener,
Extreme Nonlinear Optics (Springer, Berlin, 2005)], single-cycle nonlinear optics
[E. Goulielmakis et al., Science 320, 1614 (2008)], and attosecond physics [A.
Scrinzi et al., J. Phys. B 39, R1 (2006)]. The slowly varying envelope
approximation (SVEA) is no longer valid under these special conditions.
Although some generalizations of the common nonlinear Schroedinger
equation have been proposed, we believe that a completely different approach
to the study of few-cycle pulses which completely abandons the SVEA is
desirable.

One of the aims of this project was to develop a semiclassical theory based on
Heisenberg-Maxwell-Bloch equations in order to investigate the effects coming
from the intrinsic vectorial structure of the electric field.

In this general situation, the complex nonlinear partial differential equations
that describe the evolution of the two field components U and V are as follows:

U= Urp = [U*+V*)U] =0, (1)

V= Vi ~ [(U2 V2], = 0. (2)



In the above equations (the modified Korteweg-de Vries-type equations), Z is
the normalized distance and T is the retarded time, which is proportional to (t-
z/V;), where Vs is the phase velocity.

If we will make the transformation f=U+iV, the above equations can be written
in a compact form:

fz_f'rl'r_(lfl2 f);=0 (3)

Thus Eq. (3) is the complex modified Korteweg-de Vries equation (of type I)
that is not completely integrable from the strict mathematical point of view. An
approximate solution has the form:

f (T, Z) = \/6 b S€Ch|:b(T —3JVZZ):| eiW[T—(Wz—sbz)z] (4)

We mention that this solution is valid for relatively long pulses, i.e. for b « w.

In Figs. 1 si 2 we show the stable evolution (the robust propagation) of the
optical field in the relevant case b =1 and w = 2 (in the left panel we show the
robust evolution of the x-component of the vectorial optical field, whereas in
the right panel we illustrate the evolution of the norm of the optical field).

T

Fig. 1. Robust evolution of a few-cycle optical field.
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Fig. 2. A comparison between linear (right panel) and nonlinear (left panel)
evolution of the x-component of the vectorial optical field (that is circularly
polarized), forb=1 and w = 2.

The main results have been published in:

1. H. Leblond, H. Triki, F. Sanchez, D. Mihalache, Opt. Commun. 285, 356-363
(2012).

One of the objectives of the project during the year 2012 was:
Study of existence and robustness of vectorial ultrashort optical solitons.

We have demonstrated the formation of two or even three ultrashort solitons
with the duration of merely 0.5 cycles from an input containing 2-3 optical
cycles, see Fig. 3. Additionally, we have studied the existence and robustness of
spatiotemporal ultrashort optical solitons that can be formed in carbon
nanotubes, by using the short-wave approximation. We have demonstrated the
robust propagation of such light bullets over a few mm, i.e. over a few 1000
wavelengths, a result that is crucial for possible applications of such ultrashort
light bullets in the transmission and processing of information with very high
data rates.
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Fig. 3. Generation of three ultrashort solitons of unequal amplitudes with
duration of only 0.5 optical cycles from an input with duration of a few cycles.

The main results of these studies were published in the following two papers:

H. Leblond, H. Triki, D. Mihalache, Phys. Rev. A 85, 053826 (2012).
H. Leblond, D. Mihalache, Phys. Rev. A 86, 043832 (2012).

One of the objectives of the project during the year 2013 was:

Study of the influence of quantum fluctuations and dissipation on quantum
correlations (entanglement and discord) for bimodal Gaussian states.

In recent years, there has been an increasing interest in using the non-classical
entangled states of continuous variable systems in the applications of quantum
information processing, communication and computation. In this respect,
Gaussian states, in particular, two-mode Gaussian states, play a key role since
they can be easily created and controlled experimentally. Due to the
unavoidable interaction with the environment, in order to describe realistically
guantum information processes it is necessary to take decoherence and
dissipation into consideration. In the framework of the theory of open systems
based on completely positive quantum dynamical semigroups, we gave a
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description of continuous variable quantum entanglement and quantum
discord for a system consisting of two non-interacting non-resonant bosonic
modes embedded in a thermal environment, for the case when the asymptotic
state is a Gibbs state corresponding to two independent quantum harmonic
oscillators in thermal equilibrium. We described the evolution of entanglement
in terms of the covariance matrix for Gaussian input states and the evolution
under the dynamical semigroup ensures the preservation in time of the
Gaussian form of the states. Namely, we studied the time evolution of
logarithmic negativity, which characterizes the degree of entanglement. The
dynamics of the quantum entanglement strongly depends on the initial states
and the parameters characterizing the environment (the dissipation coefficient
and temperature). For all values of the temperature of the thermal reservoir,
an initial separable squeezed thermal state remains separable for all times. In
the case of an entangled initial squeezed thermal state, entanglement
suppression (entanglement sudden death) takes place for all the temperatures
of the environment, including zero temperature. The time when the
entanglement is suppressed decreases with increasing the temperature and
dissipation. We analyzed the time evolution of the Gaussian quantum discord,
which is a measure of all the quantum correlations in the bipartite state,
including entanglement, and showed that discord decays asymptotically in time
under the effect of the thermal bath. This is in contrast to the sudden death of
entanglement. The time evolution of quantum discord is very similar to that of
entanglement before the sudden suppression of the entanglement. Quantum
discord is decreasing with increasing the temperature. After the sudden death
of entanglement the non-zero values of discord manifest the existence of
guantum correlations for separable mixed states. We described also the time
evolution of classical correlations and quantum mutual information, which
measures the total correlations of the quantum system.

The main results were published in the following papers:
A. Isar, Physica Scripta T147, 014015 (2012).
A. Isar, Physica Scripta T153, 014035 (2013).

A. Isar, Physica Scripta 87, 038108 (2013).



The objective of the project during the year 2014 was:

Study of quantum correlations in Gaussian open systems in the two reservoir
model.

In the framework of the theory of open systems based on completely positive
guantum dynamical semigroups, we investigated the Markovian dynamics of
the quantum entanglement for a system composed of two non-interacting
modes, each one embedded in its own thermal bath. By using the Peres—Simon
necessary and sufficient condition for separability of two-mode Gaussian
states, we described the evolution of entanglement in terms of the covariance
matrix for Gaussian input states. For an entangled initial squeezed thermal
state, in particular a squeezed vacuum state, entanglement sudden death takes
place. The system evolves in the limit of large times to an equilibrium state
which is always separable. We calculated the asymptotic logarithmic negativity,
which characterizes the degree of entanglement of the quantum state. It
depends only on temperatures and does not depend on the initial Gaussian
state. It takes negative values, confirming the fact that the asymptotic state is
separable.

Within the framework of the same theory of open quantum systems, we
investigated the Markovian dynamics of the Gaussian quantum discord for a
subsystem composed of two bosonic modes, each one embedded in its own
thermal bath. We have presented and discussed the influence of the reservoirs
on the dynamics of quantum discord in terms of the covariance matrix for
squeezed thermal initial states. We assumed that the asymptotic state of the
considered open system is the Gibbs state corresponding to two independent
guantum harmonic oscillators, each one in thermal equilibrium with its thermal
bath.

The Gaussian discord has nonzero values for all finite times, and its dynamics
strongly depends on the parameters characterizing the system (squeezing
parameter and damping parameter) and the coefficients describing the
interaction of the system with both reservoirs (temperatures and dissipation
constants).



The values of the Gaussian discord asymptotically decrease to zero for large
times. We described also the time evolution of classical correlations.
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Fig. 4. Separability function S versus time t and environment temperature T_2
for an entangled initial squeezed thermal state with squeezing parameter r =
1.5,n_1=1,n_2=1,u=0.6 and coth(1/2kT_1) =5.5. We take m = k = hbar = 1.

Fig. 5. Gaussian quantum discord D versus time t and temperature T_2 (via coth
1/2kT_2) for an initial squeezed thermal state withr=0.8,A_1=0.3,A_2=0.2,

u=0.1,n1=1,n_2=3,coth1/2kT_1=1.1.
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Presently there is a large debate relative to the physical interpretation of
guantum correlations — quantum entanglement and quantum discord. The
present results, in particular, the existence of quantum discord and the
possibility of maintaining it in thermal environments for long times, might be
useful in controlling quantum correlations in open quantum systems and also
for applications in the field of quantum information processing and
communication.

The main results were published in the following papers:
A. Isar, Phys. Scripta T 160, 014015 (2014).

A. Isar, J. Russ. Laser Res. 35, 62 (2014).

The objective of the project during the year 2015 was:

Application of the quantum Chernoff bound for evaluation of the degree of
polarization of the bimodal Werner state.

Entanglement is an important resource in quantum information processing, for
example for quantum teleportation and its generalizations, quantum key
distribution required in cryptography, superdense coding, quantum
computation. During the last decades a lot of attention was paid in analyzing
the entanglement of bipartite or multipartite states. Separable states do not
violate any Bell’s inequalities and, at the same time, they cannot be used as
resources in protocols of quantum information theory that involve observers
situated at different locations.

Werner has defined an interesting set of states that remain invariant
under local unitary transformations [1]. Among these, there is a subset of
states that are inseparable and admit a hidden variable model. This means that
there is a non-equivalence between inseparability and the property of violating
Bell’s inequalities. Popescu [2] proposed a hidden variable model for the
Werner state of two qubits and proved that this state is useful for quantum
teleportation [2].



We have focused on the study of the quantum degree of polarization of the
Werner state. We employ the quantum Chernoff bound as a measure of
polarization [3,4].

i) We present the hidden variable model proposed by Popescu and
emphasize that the result obtained using this model coincides with
the one given by quantum mechanics.

ii) We also describe the analytical method of evaluation of the quantum
degree of polarization based on the quantum Chernoff bound.

The Werner — Popescu state is a mixed state, which does not violate any Bell
type inequality, and at the same time it is useful for quantum teleportation.

The interest in the study of the entanglement of the Werner — Popescu state
and the more general one, Werner state, has been increased during the last
years. we investigate another important property of the Werner state: the
guantum degree of polarization. We use the quantum Chernoff bound as a
measure of polarization of a two-mode state of the radiation field.

This bound is a recently introduced measure that enables the discrimination of
two quantum states [5,6]. The initial classical problem was formulated and
solved by Chernoff in 1952 and consists in finding the minimal error
distribution for discriminating two probability distributions in the asymptotic
limit.

The behavior of entanglement of the Werner state has widely been studied in
the literature. We have focused on a different quantity that characterizes a
Werner state, namely the quantum degree of polarization. We derived the
analytical expression of the quantum Chernoff degree of polarization [7].

In the following figure it is represented the dependence of the quantum
Chernoff degree of polarization of Werner states on the parameter a which
defines the state [7].
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Fig. 6. Dependence of the quantum Chernoff degree of polarization of Werner
states on the parameter which defines the state.
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The objective of the project during the year 2016 was:

Application of the quantum Chernoff bound for evaluation of the degree of
polarization of the bimodal Werner state.

Entanglement plays an important role in quantum information theory, in
particular for quantum information protocols and tasks like quantum
teleportation [1] and its generalizations [2-5], quantum cryptography [6],
superdense coding [7], and quantum computation [8].

The set of states that remain invariant under local unitary transformations are
called Werner states [9]. Popescu [10] proved that the Werner state of two
qubits is useful for quantum teleportation. The Werner states have attracted a
lot of attention of the quantum information community. Recently we have
investigated the quantum degree of polarization based on the quantum
Chernoff bound [11]. The quantum Chernoff bound provides the minimal error
probability of discriminating between two quantum states when many identical
copies are available [12].

We employed the quantum Chernoff bound as a measure of polarization of the
Werner state. We find the analytical expression of the parameter that
minimizes the function which is required in the evaluation of the polarization.
This gives the exact expression of the Chernoff degree of polarization of the
Werner state.

The quantum Chernoff bound represents a generalization of a classical problem
formulated and solved by Chernoff in 1952 [13], namely one has to find the
minimal error distribution for discriminating two probability distributions in the
asymptotic limit.

The quantum Chernoff bound was recently used for defining the quantum
degree of polarization of a two-mode state of the quantum radiation field [14],
[15].

In the following figure it is represented the dependence of the parameter for
which one can obtain the minimum of the quantum Chernoff on the parameter
a which defines the Werner state [16].
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We have found the exact expression of the quantum degree of polarization
based on the Chernoff bound for the Werner state. The investigation of this
topic, which started in Ref. [11], consisted in a numerical study and in a detail
presentation of how one can obtain the expression of the parameter that
minimizes the function which determines the qquantum Chernoff bound. After
getting its formula, it was used for computing the exact expression of the
polarization of the Werner state.
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