Chapter 3

Potential Energy

The macroscopic interaction energy between two heavy nsually given as a sum of
a Coulomb-energy and a nuclear term. The problem of detemmihe nuclear part of the
interaction is one of the important and as yet not completelyed problems of low-energy
nuclear physics.

One of the most common ways to obtain information about theraction of two nu-
clei is to analyze the experimental data on the elasticextadt of heavy ions. This is done
in the framework of the optical model, the overwhelming nnigyoof studies being based
on the Woods-Saxon form of the nuclear potential, which wagirally used to describe
elastic neutron-nucleus scattering. There are well-kntiiculties with the optical model
associated with ambiguity in the determination of the pat@nms of the potential due to
incompleteness of the experimental data sets. Moreoverethdt the analysis of the ex-
perimental data is to large extent influenced by the pagrcaagsumption made on the radial
dependence of the potential. By adjusting the parameténged/oods-Saxon potential using
specific experimental data, a correct description of theien of the potential in a narrow
range of distanceg is achieved. For a physically justified parametrizationlibbavior of
the potential outside the region of sensitivity must belstahth respect to small changes in
the masses of colliding nuclei. In contrast, an unappropparametrization may result in
a phenomenological potential which becomes physicallymmegess outside the region of
sensitivity.

Therefore it is natural to seek for an alternative to the Véa8dxon potential, like for
example the theoretical calculation of a ion-ion potentvathich despite its approximate
nature, can correctly reflect the qualitative dependentigeahteraction masses, the collision
energy, and the distance between nuclei.

Due to the complexity of the many-particle problem in thevyei®n collisions or de-
cays, it is customary analyzed within two extreme approxiong - the adiabatic and the
sudden(diabatic) models.

In the first approximation the approach(distancing) of theters of mass of the collid-
ing(decaying) ions is accompanied by a smooth adiabatiecgghan the internal structure of
the ions, the equilibration of the nuclear densities beimgrgetically favored for each dis-
tance. When an adiabatic collison(decay) occurs, it is 80§ that the relaxation rate of
the internal degrees of freedom of the target(larger aubtelarge compared with the trans-
lational velocity of the projectile(lighter cluster) Iniathatic models the liquid-drop model
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lead to a correct connection between the properties of naratdear matter and the behav-
ior of the potential at the edge of the nucleus but its appliitg fails in the interior region
of the potential, i.e. in the strong overlapping region & tolliding or decaying nuclei.

In the second approximation, the collision(decay) occarapidly that the internal struc-
ture of the ions cannot change significantly during the adgon time. In this case, the
nucleon densities of the nuclei in the region of their oyedae simply added, and this, un-
avoidably leads to the occurence of a strong short-rangdgigp core in the potential In
other words, models based on the suden approximation watvahce for the Pauli prin-
ciple predict the existence in the interaction potentiabhadtrong repulsion when the ion
densities are sensitively overlapping, thus preventiegiiclei from penetrating each other.
This property is specific for composite systems of fermiargsia not related to the repulsive
core in the nucleon-nucleon potential. The existence obatshange repulsion follows from
existing microscopic calculations of ion-ion interactibased on the approximate solution
of the many-particle Schrodinger equation with a two-bodgleon-nucleon potential.

A measure of the adiabaticity or diabaticity is given by tladia k/kr, wherek =
v/ (2m/h?)E /A is the mean translational momentum of a nucleon in the piitgeandk
is the Fermi momentum for the internal motion of nucleon&i@she nucleus. Ik > kg,

a sudden collision can be expected. In the opposite case,i.eas: < kr an adiabatic
collision occurs. Let us make a rough evaluation for the cds®Id fission. For the Fermi
momentum we take the infinite matter ansatz [1] , ke.= (372p/2)"/3, which for a con-
stant density readsr = (97)'/3/2rq). For A we take the value 100 corresponding to a
possible cluster emitted in the cold decay8{Cf and for £ a value of 200 MeV comparable
to the cold decay)-value. The evaluation gives/kr ~ 0.25. For nuclei from the super-
heavy island £=112-122) synthesised with in cold reactions we obtain eslwithin the
same order of magnitude. This means that cold fission andrfueactions of heavy and are
superheavy nuclei are apparently inbetween the two exsefRer this reason both model
will be applied throughout this work and especially the srdchodel.

3.1 Liquid-Drop Model

The most simple example of adiabatic model in calculatirgikeraction potential between
two heavy ions is the method based on a representation ofuttieus as a liquid drop of
incompressible nuclear matter. The Liquid drop Model (LDMJs originally conceived in

the mid-thirties of the last century by C.F. von Weizsackéh the task to calculate ground
state nuclear binding energies [2] . It was recognized dttthre that gross properties of
nuclear fission could be understood in terms of the shapendepee of the surface and
electrostatic energies. One of the most simple Ansatz of B mass formula is the sum

of the individual protonl/; and neutron\/y masses reduced by the binding energy [3].

Mip(N,Z) = MyN + MyZ

3 e2 72 D d? 0.7636
. 2/3 2 _ 72 —

In deriving eq.(3.1) it was assumed that the nuclear mattdre interior is uniform and in-
compressible so that the radius of the spherical nucleusoptional toA'/3. The assump-
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tion of incompressibilty means that in a collision of heaops one can admit all volume
preserving deformations of their shapes.

The last three terms in the above formula are accountingni®ibtnding energy . The
first of these terms is called thelume energynd is proportional to the total number of
particles.

3.1.1 The Geometrical Surface Energy

The next term in (3.1) is theurface energythe factorA?/3 being proportional to the surface
area for a spherical nucleus. To deal with different typeswfaces the quantityss is
introduced. It relates the surface energy of a deformedewscEs s = o [ dS (o-surface
tension given in units of MeV/fi) to that of a spherical nucleug? = 47 R3o, with the
same volume :

Esurf 1
Bsyi= —— = d 3.2
surf Eg 47TR% / S ( )

The integration is performed over the volume of the nucleafiguration, whose magnitude

is held fixed atiw R} /3 as the nucleus deforms. The equivalent-sharp-surfacesayiof
the spherical nucleus is related to the nuclear-radiustants by

Ry = rgA'? (3.3)

In cylindrical coordinates (3.2) reads

Bourt = 2%3 / R p(z)\/ 1+ (d’;—f))de (3.4)

wherez; andzy are the left and right tips(poles) of an axial-symmetriclaus. Using the
parametrization of Myers and Swiatecki [3] we have that

A—27\?
E° =17.9439 [1 —1.7826 ( v ) A?BPMeV (3.5)
Pashkevich [4] proposed another ansatz
A—27\?
E°=121.13 [1 —2.3 ( ) A?Mev (3.6)

3.1.2 Yukawa-Plus-Exponential Potential

Eq.(3.1) results from an expansion of the nuclear energyoimeps of A~'/3 and relative
neutron-proton excess= [(N — Z)/A]? (leptodermous expansion) [3]. This expansion is
valid only if all geometrical dimensions of the drop are Egmpared to the surface thick-
nes, and consequntly breaks down for two nearly touchin¢enand for shapes with small
necks, for example around the scission point in fission drdostact in heavy-ion reactions.
The liquid-drop formula yields a spurious and undesirabtesgivity of the calculated fission
barriers on unphysical fine details of the shape in the negikbme Therefore a generalization
of the liquid-drop formula was proposed which satisfies tioWwing conditions :
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e It should reproduce the result of the old liquid-drop forenébr spherical configura-
tions.

¢ It should not be sensitive to to the high multipole wigglegtoa surface of the drop.

e There should be an attractive nuclear interaction energydsn two separated frag-
ments besides the Coulomb repulsion. The range of thisattedorce should extend
beyond the equivalent sharp radius by roughly the rangeeofititleon-nucleon inter-
action. One should require the minimality of the surfacegyef the two half-spaces
of nuclear matter at the instant when they touch.

In the original single-Yukawa modified liquid drop model Bk surface energ¥su =

E?2 Bsuit Was replaced by

2
E, = Ey(a,cs) + gr—cSA (3.7)
a

where

E " T‘/ad?’ d>r’ 3.8
v(e,a,) =~ 87rra3// lr — 7| rer (3:8)

and the quantity: is the range of the Yukawa folding function. In the limit— 0, eq.(3.7)
yields exactly the surface energy of the liquid-drop foran(8.1). The effective surface-
energy constants depends on the relative neutron-proton excess

Cg = (ls(l — stQ) (39)

whereag is the surface energy constant ang is the surface-asymmetry constant. The
second term in (3.7) cancels the volume-energy term prasém double volume integral of
the Yukawa function. However the single-Yukawa potentialates the requirement that for
a saturating nuclear system the interaction energy peatggtreach a minimum at touching.
This saturation condition can be satisfied by the use of th@wa-plus-exponential form of
the interaction [6]

— —|r=7'|/a
E,=——_ / / r=rl) e Brd®r (3.10)
8n2riad a lr — 7/

The above integral would be zero if the integrations avandr»’ were both extended over
all space. Consequently this new form of the potential da¢€ontain a volume term and
does not require volume renormalization. A two-fold apgiion of the Gauss divergence
theorem transforms (3.10) into the double surface intd@tal

_r-r/] }

f{ f{ 2 u +2| LA
871'2
(r—7')-dS(r—7r')-dS’
This is a four-fold integral which has to be computed nunadlycfor arbitrary shapes. For
an axially symmetric, but otherwise arbitrary shape, ondefzimuthal integrations can be

E,

(3.11)

|r — /|4
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performed trivially. With the nuclear surface specified ytirdrical coordinatesd, ¢, z) by
the equation

p=p(2) (3.12)
we obtain a threefold integral
B 2r |r — 7| LM einuam
R RS |
< ple) o) — o) coso - e - )
<0l [ol) — ple)cos - L )| LA 3.1

where the integrations overansz’ extend from the left tip of the shape locatedato the
right one located at; and thep integration extends from O tar2 For an axially symmetric
shape the distande — /| is given by

|7°—7°|—\/p 2) —2p%(2)p2(2') cos ¢ + 22 + 2/ — 222/ (3.14)

The nuclear finite-range energy corresonding to a spheds rea

2 2
EQ:E§{1-3<3> +(1+T—°) 2+33+3<3> ]e—%} (3.15)
To a To To

Taking the free parameters to have the valugs= 1.18 fm, a =0.65 fm,ag =21.7
MeV and ks =3.0, Krappe, Nix and Sierk [6] were able to obtain a good dpson of
a large collection of experimental data relating to the eacmasses and deformations, the
fusion and fission barriers, and the differential crossises of heavy-ion small angle elastic
scattering .

To compare the surface reduced energy with the finite-ramgevee represented in
fig.3.1, the upper panel, the two curves as a function of tbegaltions for two different
ag. Itis to be noticed that the difference the two curves inseeaithe. The finite range
energy has a smaller rate of increase. Beyont, when rupture occurs, the surface energy
is saturating.

3.1.3 Coulomb Potential

The last term in eq.(3.1) is theoulomb energynd contains the factdB.,, which relates
the actual Coulomb energy of a deformed nucleus,

1 ,P(1)p(r")
ECOUl_ §/d’r/d’r W, (316)

2z2

to that of a spherical nucleug?, = % , of the same volume

(3.17)
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Figure 3.1: Surface and finite-range reduced energies (upper panel)p@b reduced energies with
and without finite-range corrections (middle panel) and LB&formation energies with and with-
out finite-range corrections (lower panel) for reflexiomasyetric shapesa; = 0) and reflexion-
asymmetric shapes§ = 0.15).

and in cylindrical coordinates

R

Bmggélja@(mﬁ—w@?fﬁw (3.18)

& <>+p<>+@—zm<ﬂ“>]K%%—2wD@%}

AR} vﬁ___{{ dz
(3.19)

K(k*)andD(k?) = [K(k*) — E(k*)]/k? being complete elliptic integrals of the argument

e 4(2(2)
=22+ o+ 7P

(see [8], p.74, eq.(7.10)).
The Coulomb energy of a charged sphere is according to MyerSwiatecki [3]

2

Z
B = 0.7053 7z MeV (3.20)

and to Pashkevich [4]
po_ 32z

= A AT (3.21)
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Figure 3.2: LDM deformation energy surface plot inandas for the heavy nucleu$'®Pu.

with (5) =45,
To account for finite-range effects, although small in thellGmb the energy (see the
middle panel of fig.3.1), we have to add the correction

2 2
SEY = E%{ -5 (3) 1- 03752 5—7(3)

To To To

2 3
— o7se ol (14458 47 (3) 135 (3) (3.22)
To To To

3.1.4 Deformation Energy

The macroscopic part of the deformation energy is computedrding to the LDM, i.e. the
actual total energy minus the value for a sphere (see [8}, d.(1.74))

ELDM = Esurf - Eg + ECouI - ECO (3-23)

One of the most convenient parametrization of the nucledace used in the computa-
tion of the deformation energies for arbitrary distortis#he Cassini parametrization [4]. In
this parametrization an axially deformed shape can be ngtst in cylindrical coordinates

_L .TI/Q— 21, 1’2— —821/2
p= ﬂ[G( ) R (x) (227 — 1) — eRy] (3.24)
z = Sigl7"(5‘7)[61(3;)1/2 + R?*(z)(22% — 1) + eR2]V/? (3.25)

V2
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Figure 3.3: LDM deformation energy surface plot inand .

where
G(r) = [R4(x) + 2€R3R2(9€)(2x2 —1)+ 52R§]1/2

The curveR(z) is expanded in Legendre polynomials
R(z) = Ro(1+ Y _ aPu(2)) (3.26)

Thus a deformed shape in Cassini parametrization is deschi the following defor-
mation parameters:, «,,,, m = 1,2 ..., M. In the calculation of the finite-range part of the
potential there is a difference compared to Krappe et al. takesr,=1.16 fm and: =0.68
fm.

In the lowe panel of fig.3.1 the LDM deformation energy is ptbagainst. For reflexion-
symmetrical shapes; = 0 the barrier is smaller than for reflexion-asymmetrical gsap
But the most visible feature of this plot is the tremendougease of the barrier when finite-
range corrections are introduced.

In fig.3.2 the LDM energy surface plot is given in terms of trefadmatione, which
describes symmetric elongations ang which describes octupole or reflexion-assymmetric
distortions. All higher deformations are keeped fixed, ,=0. Consequently the LDM
predicts a symmetrical fission barrier, centered on thetioe «; = 0. Since the octupole
deformation has similarities with the mass-asymmetey (A; — A2)/(A; + Ay) then the
most favourable valley for fusion is also the symmetric oifenstead ofas the hexade-
cupole deformationy, is variated, keeping again fixed all other deformations ,=0 an
asymmetric surface is obtained (see Fig.3.3). The lowestsiis again encountered along
gy = 0.
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It is important to note that models based on the incomprkskguid drop model of the
nucleus lead to the correct connection between the pregasfinormal nuclear matter and
the behavior of the interaction potential at the edge of thhgeus. At short-distances they
give a weak attraction and do not have a repulsive core.

3.2 Shell Corrections

3.2.1 Phenomenolgical shell corrections

The phenomenological method introduced by Myers and Sekaf8] is a uncomplicated
functional form which enables the rapid evaluation of nackehell corrections. It is conve-
nient to use in the cluster decay or cold fission due to thetlfettthe fragments are close to
their ground state deformations. The Myers-Swiateckilgredrgy is expected to describe
the potential energy of fragments far off the line/$tability with sufficient accuracy, as it
accounts well for the binding energies and quadrupole mesredra large number of nuclei
throughout the Periodic Table.

The shell correction of Myers and Swiatecki [3] for a nucledrsch stands only spheroidal
deformations reads

F(N) + F(Z) 13 2 2
Vshel = C @B cAVP| (1 - 26%) exp(—6?) (3.27)
where ” "
3 M;"" — M7y 3 5/3 5/3
F(m) = gm(m = M) - B (m — Mi—l) (3.28)
andM; andM,_; denote the nearest(spherical) magic numbers
My <m < M, (3.29)

For spheroids] in eq.(3.27) is related to the Hill-Wheeler parametgd9] by
(roAY3)%62(1 — Lo)
5a?

6? = (3.30)

and to the major semiaxisby

z

The parameters entering in the above formula @r&b.8 MeV, ¢=0.325 anda=0.444,,
ro =1.2249 fm.

If the shape is non-axia}(£0), but still ellipsoidal, the shell corrections can be at¢al
by a curvature-dependent integration [9]

C N A
Vshell = IrrE AV /k? { [F <ﬁ) + F <E)} 2233 — CA} as (3.32)

l-a Lo as
Ry+R. |5l Ry+R.
whereR| = 1/k;andR | = 1/, are the curvature radii, the curvature$,andx*, being
defined in (3.144-3.145).

where

k= 2rgAY3 [ (3.33)
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3.3 Folded Potential Model

The folding model of the potential between two nuclei hashesed widely to generate the
real parts of botlw-nucleus and heavy-ion optical potentials. Antisymmatian of the sys-
tem is taken into account by considering single-nucleondkion’ exchange terms in which
the interacting pair of nucleons in exchanged. The succdsopotential in describing the
observed elastic scattering of many systems suggests ratduces the dominant part of
the real optical potential [10, 11].

3.3.1 Microscopical Foundations

Although there is presently no microscopic theory for thelaus-nucleus scattering, a mi-
croscopical foundation of the optical potential for thetss@ng of two composite nuclei is
available within the framework of the Feshbach theory ofi@aicreactions [12].

If the exchange of nucleons due to antisymmetrization igailhy ignored then the total
wavefunction for the colliding projectile] plus target{) system, may be expanded in terms
of the complete set of internal eigenstates of the indiMidualei

V= ZRw 7) i (Ep) D1 (&1) (3.34)

whereR,;; describes the relative motion when the nuclei are in thégrival states labelled
andj. If = 0 andj = 0 denotes the ground states of the nuclei, then the radialfwaston
componentR, gives the elastic scattering. The problem is to find an affechteraction,
or optical potential[/ that will generateR,, when plugged in the one-body Schrodinger
equation
(%2 9

o —V*+Ug(r)| R(r) = ER(r) (3.35)
In the Feshbach theory the Hilbert space is partioned intoptiompt (the first statep
and delaying (the second stat®)components which are orthogonal . The open channels
(resonant states) are included usuallyArand the closed channels . Suppose thaP
consists only of the elastic channg},. Feshbach introduced projection operatBrand(

onto the space® andD. Writting (3.34) in the form

V=PV +QV (3.36)
where
P¥ = Roo(r)ép(&)on(&), Q¥ = > Rij(r)dn(&)dr (&) (3.37)
1,j7#0,0
and introducing the notations
Hoo = PHP, Hy,=PHQ, H,=QHP, H,,=QHQ, (3.38)

where the label 0 stands for the ground statesafaol the closed channels, and multiplying
the many-body Schodinger equation satisfiedly

(E—H)W =EW (3.39)
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from the left by P and(@ we obtain
(E — Hoo)(P¥) = HoQW, (E — Hoo)(QW) = HyoPV (3.40)

Since the many-body HamiltoniaH = H, + V' is the sum of the Hamiltonians for the
internal degrees of freedom of the projectile and targetthedcinetic energy operator for
their relative motion(H,) and the potential’), Feshbach restricts the class of projection
operators to those for which

Hy, = Vo, H,o= Vi (3.41)

The coupled Feshbach equations (3.40) can be formally dalsdollows:

1

n—0

The above expression includes the boundary condition liesétis no incident wave in the
subspacé®. Thein in the denominator of (3.42) is introduced in case some ofofen
channels are included . Substituing (3.42) the first equation from (3.40) yields

(E—Hy—Ug)P¥ =0 (3.43)

where .
Ve=Voo+1limVo, | =————] Vi 3.44
E oo+n1i% 0 (E_H00+i?7)nn 0 (3.44)

The separation of the radial part in (3.43) leads to the ddsguation (3.35). The first term
in the effective interaction (3.44);,, is associated with the prompt(elastic) process and it is
simply the folded potential

Voo = V(1) = (podwo | V' | dpodro) (3.45)

whereV is the (real) interaction between the two nuclei. The sedench describes the
time-delaying effect of coupling the elastic channel (g7t with the channels from space
D), propagation irD as given by(1/E — Hy, + in),,, and then reemission inf®. It is often
denoted in the literature b Uy and referred as théynamic polarization potentié@DPP).
We see thalAUy is energy dependent, complex and nonlocal. These propamgconse-
quences of the presence of the propagat@® — Hy, + in),,,,. The imaginary part arises
from energy-conserving transitions to open nonelastiochb in which flux is lost from the
elastic channel. The real part comes from virtual excitetj@orresponding to readjustment
of the two nuclei when they began to interact but which arenmssd and they return to their
ground states. Energetically closed channels can cotdribuhe real part oAUg. The dis-
persion realtion between the real and imaginary patk&f; is derived in [12]. Nonlocality
of AU means that if the system is excited into a nonelastic chaasingbsitionr, then it
will in general return to the elastic channel at anothertpmsi’ £ r.

It is assumed that the interactidhis a sum of local two-body potentials

V=> vy (3.46)
pt
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with p labelling a nucleon in the projectile amane in the target,

The individual internal wave functions, ) (£) in (3.34) are each taken to be antisym-
metrized. Since the Pauli principle requires that the tat@vefunction ¥ must also be
antisymmetric under interchange of nucleons between tbetwlei, the so-calleknock-on
exchangeerm is introduced in,,

Upt — ’Upt(l — Ppt) (347)

wherePF,, is the operator that exchanges all coordinates of these ileons. In a collision
the knock-on exchange results in a target nucleon beingegjend replaced by the projec-
tile nucleon following their mutual interaction. Conseqtlg the first term of the effective
potential (3.44) is replaced in this approximation by

Voo = Vir(r) = (dpodro | Y vpt(1 = Por) | dpotio) (3.48)

By interchanging the spatial positions of the two nucledmsdentres of mass of the two nu-
clei are affected together with their separation distaricé r. The corresponding exchange
contribution to the potentidly, becomes nonlocal.

3.3.2 Double-Folding Integral

Consider two heavy ions with one-body ground-state defdrdemsitieg, andp, and center
of masses separated by the distafiteThen the interaction (3.48) betwen these two ions
can be evaluated as the double folding integral of thesetikns

V(R) = <<Z510<Z520 | V | ¢10<Z520> = /d"“l/drzpl(ﬁ)pz(rz)v(ﬁz,01702) (3-49)

wherer;, = R + ro — r1. For simplicity, the spin and isospin was ignored. In thevabo
formula there is allowance for a possible density depenglefc.

The evaluation of the above folding integral is facilitateyl the convolution theorem
which states that the Fourier transform of the folded qunamgi simply the product of the
transforms of the individual component functions [14, 1B{roducing the Fourier transform

V' (q) of the double-folding integral (3.49) through

Vig) = /dr exp(iq - R)V(R) (3.50)
the double-folding integral (3.49) writes
V(R) = () [ daV(@ exp(~iq - B (3.51)

where the Fourier transform of the double-folding potdmgads

V(g) = p1(q)p2(—q)v(q) (3.52)
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Y1

Figure 3.4: The position and space orientation of the two nuclei is diesdrby the center-to-center
distance and the Euler angleg ;,y; which are giving the transformation to the intrinsic system

Consider the geometry from Figure 3.4, where the unprimesia@tresponds to the lab-
oratory frame, the primed to the molecular (dinuclear sy$ttame and the double primed
to the body fixed framed of each nucleus. The density didtdhw;(r’) in the molecular
frame is related to that in the body-fixed frame by Euler rotet

pi(r') = R(c, Bi,vi)pi(r") (3.53)

In the above formula we adopted for each set of Euler anglesy;, 7;), the condensed
notationw,;. We consider that the density distributions in the printgpees,p;(r”), is axial
symmetric

Z p(r)Yao ) (3.54)
and that its shape is given by a Fermi dlstrlbutlon
pz‘('f'”) = % (355)
l+e'a

with ¢; = co(1 + >, o, BaYa0(7))). The constanp, is fixed by normalizing the proton
and neutron density to thg, proton andV; neutron numbers, respectively. This condition
ensures the volume conservation. The half radjuend the diffusivitya are taken from the
liquid drop model [16].

Using the transformation property of the spherical harre®nnder Euler rotations [17]

R(wi)%m’(ea ¢) = Z Yim(ea ¢)D£nm’ (wi) (356)
we obtain for the density distribution in the molecular feam

= o) Dyng (i) Yau (7)) (3.57)
AL

The Fourier transform of the density distributipfy) = [ drp(r) exp(iq - r), occuring in
(3.52), can be calculated using the plane wave expansion

exp(iq - 1) =47 Y i ji(qr)Ym, Q) Yim () (3.58)

Ilm
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which leads to the final expression

p(+q) = 47TZ(ii))\DﬁO(Wi)YAu(Qq)ﬁ)\(Q) (3.59)
Al
where
ala) = am [ drros(r)is(ar) (3.60)

The Fourier transform of the nucleon-nucleon interacteads
v(q) = /ds v(s)exp(iqg - s) = 47T/dr32j0(qs)v(s) (3.61)
The Fourier transform of the double-folding potential @Q.feads

=) ) MDY (w1) D)2 (w2) Vi () Vs ()P0, (0)Pe (0)T(q)  (3.62)

ALp1 A2 pt2

which substituted in (3.51) leads to the following expressif the double-folding potential
(3.49) in multipolar form

1 S A A A A A A
V(R) — 5 3ZZ’/\F/\27/\3>‘1)‘2)\§ 1 2 3 1 2 3
(2m) Aifti 0 0 0 M1 f2 p3

X D)lo(wn) Do (ws) Dpo(®, 0, 0) Py (R) (3.63)

with the radial part given by the oscillating integral

Frnony (R) = / 0g P, ()7 (@) (R)T(0) (3.64)

Above®, © are giving the orientation of the molecular system with ez$po the molecular
axis. Then eq.(3.63) can be rewritten in the more conderm®a ih which the radial and
angular parts are factorizing

=Y VAR A (R) Dyt (wi) Do (w2) Do, ©,0) (3.65)
Ai b
The radial multipoles are writing

A Ay A A Aa A
12)\1 Ao )\3)\)\)\ 1 A2 Ag 1 2 3 F,\IAQ,\S(R)

VA (R) =
e (2m)? 0 0 0 M1 2 M3

(3.66)
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If the fission(molecular)-axis is fixed in the laboratoryrfra, then one can chose =
® =0, andD}3,(®,0,0) = §,,0 which leads to:

V(R) = Zv*;l;gfs VD) (a1, Br, 0)DX2 o (ciz, B, 0)

= 5 Z VAL LR (L4 ()27 cos plan — o )doy (B1)d2,0(5a)
+ 5 Z VAL V(R — (=) sin (o — a)dih (1)d,(B2)
(3.67)

Due to the 34 coefficient occuring in eq.(3.66) with all the angular mortoem projections
equal to zero, the angular momenta must fulfifl + Ao — A3 =even, otherwise the 3-
equals zero. Thence, the last line in the eq.(3.67) canceldlee final expression of the
double-folding potential reads

V(R) = Z VTS (R) cos oz — an)d(B1)d 20 5a) (3.68)

i

3.3.3 Effective N — N Interaction

The central part of the effectiv® — N potential interactionm may be written

vo= wvo(ri2) +vo1(r12)T1 - To + v19(T12)01 - 02 + V11 (T12) (T1 - T2) - (071 - O2)
+ (Ugs + U1LS7'1 ~T9)L1s - (01 + 02)
+ (vg +v{T1-T2)S1 (3.69)

wheres, T are the Pauli matrices for spin and isopsin respectivelg.firat row of the above
equations represents the central part of the effectiventiate The second raw contains the
spin-orbit (L.S) part where the relative angular momentum is

! T1—T2) X (P; — Py) (3.70)

Lo =
12 2h(

and the third row the tensor terr’\ where the tensor operator is
512 :3(0'1 '7%12)(0'2 '7%12) — 0109 (371)

In our next considerations we drop-out the non-central $erm

When either target or projectile has zero spin, the cergrah vy (r2) (71 - 72) - (o771 -
o) with S = 1 do not contribute. Similarly it will not contribute whefi = 1 if either
nucleus has zero isospiV(= 7). Usually the spin terms are relativey unimportant in learri
penetration phenomena. Only one or a few unpaired nucleoeaah nucleus contribute to
the S = 1 potential whereas all nucleons contribute to the- 0 potential. Also theél’ = 1
interactions tend to make a small contribution.
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For two spinless nuclei9=0) the integrand of the double folding integral (3.49) may b
written

p1p2vo0 + (P — p2)(PY — p2)von (3.72)

wherep?(p) are the neutron(proton) distributuins in nucleusin all the calculations we
assume that!’ = (N;/A;)p; andpl = (Z;/A;)p; and (3.72) rewrites

(N1 — Zy) (Na — Z)
Ay A,

P1P2 | Voo + Vo1 (3.73)

For realistic interactions,; andwv,, are comparable (typicallyy, /vo0 ~ —0.5). For usual
light quasi-molecular systems such'3€-'*C, Si-*8Si, *Ni-°°Ni, the asymmetry N; —
Z;)/A; is zero. It is obvious that this term is important only in cadesery neutron-rich
targets and projectiles. In the cold fission*ofCf the fragments are in average moderately
neutron rich. In the splitting®>Cf —!%¢ Mo+!4Ba we have thatN, — 7;)/A; ~0.21
and (N, — Zy)/ A, ~0.23 which gives a contribution of up to Z5in the double folding
integrand. Since such a contribution to the fission(fusar) give a sensitive change in
the transmission probabilities this term is taken into aotdhroughout our calculations.
Thus in this work only the isoscalar and isovector compahéiatve been retained. The
spin-dependent components have been neglected since doro& fragments involved in
the calculation the ground state spins are unknown. Moretve spin-spin component of
the heavy-ion potential is of the ordéfA; A, and can be safely neglected for heavy and
superheavy nuclei.

As discussed above the only effect of antsymmetrizatioreueschange of nucleons
between the two nuclei that is normally included in the fotgdmodel is the single-nucleon
knock-on exchange in which the two nucleons that are intexgvia v,, are interchanged.
As concluded in [18] the knock-on exchange potential cn bienased quite accurately by
adding a zero-range pseudo-potential to the interactjon

U;t = Upt(1 — Pyp) — vpe + j(E)é(Tpt) (3.74)

By introducing the delta function, i.e. a zero-range fotbe,exchange term becomes local.
The strength depends weakly on the enefgy

Density-independent M3Y interaction

Among the effectiveV — N interactions introduced into the folding model, the Micimg3
Yukawa (M3Y) parametrization is one of the most widely udedtails about the derivation
are given in [19]. This interaction is particularly simpteuse in folding models since it is
parametrized as a sum of 3 Yukawa functions in each spimpiisgs, 7') channel.

The explicit form of the central term appearing in (3.69)iigeg in the versions Reid and
Paris

—4r —2.5r

veo(r) = l7999€4r —2134—— ] MeV, M3Y — Reid (3.75)
674r —2.57r

voo(r) = l11062 i 2538 55 } MeV, M3Y — Paris (3.76)
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Both versions consists of a short-ranged repulsion and g-fanged attraction, passing
through zero near ~ 0.5 fm. In momentum space the the equatigg(¢q) = 0 has a
solution aty ~ 2 fm~".

The folding integral (3.49) satisfies some simple relatibns, does not depend upon
the densities. If the density distributions are spherycgyimmetric and, is scalar, then

J(V) = J(0)J(p1)J (p2) = A1 A2 J (v) 3.77)
where/J is the "volume integral” of the functioif

J(f) = 47T/f(T)T2dT (3.78)

Furthermore, the mean-square radii are introduced
(rPyv = )1+ ()2 + ()1 (3.79)

where Fdret £

2 . rr T
(ro)y = Tar i 1) (3.80)

Then, the volume integrals of the interactions (3.76) andgBare Jy(Reid)=-146
MeV fm? and Jy(Parig=+131 MeV fr?. The mean-square radius for the Reid version
is 7.6 fn?, while for the Paris version it is 8.73 fin

The M3Y interaction is dominated by the exchange compotikeetefore it is extermely
important to include this component in the barrier calgatatn an accurate way. The one-
nucleon knock-on exchange term leads to a nonlocal kerne rdnge of the nonlocality
behaves ag~!, whereu = A; A5 /(A; + As) is the reduced mass of the interacting system,
and therefore the nonlocal potential is reduced in the ptessese to a zero range pseudopo-
tential jooé(s), with a strength depending slightly on the energy. The ntageiof.Jy, has
been determined empirically [20] by comparing cross sestifor proton scattering from
various targets, and at various energies up to 80 MeV, cledlusing (3.74) with those in
which the exchange was calculated exactly. The resultsdtirsbversions(Reid and Paris)
can be expressed as

Joo A~ —276[1—0.005(E/A)] MeV  (M3Y — Reid) (3.81)
Joo ~ —590[1—0.002(E/A)] MeV (M3Y — Parig (3.82)

where E'/A is the bombarding energy per projectile nucleon in MeV. Itdqarocess the
energy is not high and therefore we neglect the energy depeed For example, the odd-
even staggering in th@-value for a fragmentation channel, which is tipically oétbrder
AQ=2 MeV, leads to a variation with..Joy=-0.005AQ /;« MeV-fm? with . ~100. In treating
the exchange potential of thenucleus and light-ions scattering a finite-range was pgedo
[21]

1631 17grt st VeV, M3Y — Reid (3.83
g = — — 7. e — Rei )
o () { ir 2.5 0.70727& ’ (3.83)
Pl 7807 | Mev, MY — Paris(3.84
°r = |—152 — 518.8 — 7.8 e — Paris(3.
o (r) { 1r 2.5r 0.70727“] ’ '5(3.84)



3.3 Folded Potential Model 94

An important difference between the Reid-based and Passddirect interactions is
that the later is repulsive. Its volume integral is compherat magnitude to the Reid one,
but of opposite sign. On the other hand, the Paris exchangadeoughly twice as attractive
as the Reid one. This fact becomes transparent by inspebengseudo-potential strengths
(3.81) and (3.82). However when direct and exchange pailsrdare combined, their sums
are very similar [22].

For the Reid version of the central isovector part the follmyform is used

4r —2.57r

o
1175.5
4r + 2.57

Vo1 (T’) = | —4885.5 MeV (385)

and for the isovector component of the knock-on exchange ter
Jo1 = 217 MeVfm® (3.86)

Taking into account only the isoscalar and isovector coraptsithe effective density-
independentV — N interaction used in this work is

v(r12) = voo(Tr12) + j005(""12) + (vo1(7r12) + j015(7°12))7'1 " T2 (3.87)

It is important to remark that the M3Y forces are purely rsalthat the imaginary part
of the optical potential either has to be constructed inddpetly or treated phenomenolog-
ically.

A second remark is that they are independent of the density@é&ar matter in which the
nucleons are embedded, and are also independent of eneept éxr the weak dependence
of the knock-on exchange.

Density-dependent M3Y interaction

The density dependence of the effective— NV interaction in a nucleus is required for
nuclear matter to saturate rather than to collapse. Foldéehpals based upon density-
independent interactions like the M3Y are able to reprodineedata o scattering at
forward angles or low energies. Thus, the potential expedd in peripheral collisions
is correctly reproduced. However, the rainbow-like featuseen at high energies and larger
angles were not reproduced because these features ateseg¢ashe real potential at smaller
radii. This drawback steems from the fact that the folde@pual is at least a factor of two
to deep. This is a clear indication that the effective intéoa must depend upon the position
within the nucleus of the two interacting nucleons.

A density dependence is introduced in the M3Y(DDM3Y) intdi@n assuming that the
effective N-N interaction factorizes in a radial part indagent of the energy and a factor
dependent on energy and density [11]

vPP(p, E,r) = f(p, E)'(r) (3.88)

wherev’(r) is the original M3Y interaction(including the knock-on ps®-potential). Al-
though this factorization is rather arbitrary form theaaitpoint of view, the approximation
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that the shape ofi(r) does not vary strongly with density at low bombarding eresgs
reasonable. According to ref.[23] the density-dependsetbf is taken in the form

f(p, E) = C(E) [1 4 a(R)e "5r] (3.89)

with
p = pi(r1) + p2(r2) (3.90)

The parameter§'(E), «(FE) and 5(F) are chosen at each energy so as to make the varia-
tion with density of the volume integral e” match as well as possible the results of the
Bruckner-type calculations for a nucleon scattering framlear matter at various densities
p ranging from about% to 100% of normal nuclear matter and at nucleon energies from 10
to 140 MeV [24].

Then the isocalar part of the DDM3Y interaction is

WDPMIY (B Reid) = f(p, E) [UOO(T; Reid) + Joo (E; Reid)é(fr)] (3.91)

A difficulty related to the density dependenty Ansatz (3i83he occurence of densities
roughly twice that of normal mattep,~ 2p,, when the two ions are overlapping. The main
problem is that different versions of the density depend@iee, by design, the same satura-
tion properties but different curvatures of the bindingrggecurve B(p) near the saturation
point, i.e. they are associated with different values ofrthelear incompressibilty

(3.92)

Although the DDM3Y interaction insures the saturation af thinding energy per nucleon,
B(p < po) at large overlap(about 16 MeV per nucleon), it provides angrminimum of
the normal density ap, ~0.07 fn? instead ofp, ~0.17 fn3 as predicted by Hartree-
Fock approximation of the nuclear matter. Consequentlgtmeentional DDM3Y does not
satisfy the criterion of saturation at the right density.

Consequently a more realistic power-law dependence[@6] was adopted

f(p) = C(1 = ap”) (3.93)

which can change sign at large The powers is taken to be one-third of an integer, cor-
responding to the dependence upon an integer power of thmei Rewmentum. Various$
were chosen =§, 1, 2 and 3) in combination with M3Y-Reid or M3Y-Paris. Hoveev
integer values of’ allow for a simple separation of variables when these icteras are
used to compute double-folded potentials. Valuestanda were selected such as to sat-
isfy the saturation condition8,=16 MeV andp,=0.17 fn13. These new density dependent
interactions were named BDM3Y [22].

The folding model for the scattering of two nuclei taket be the suerposition of the
target and projectile densities, such that the total dgpsitpproaches @ when the nuclei
overlap strongly. This makes the potential at small radisg@/e to the kind of density de-
pendence assumed. The interaction in this region weakeng@s() increases, thereby
offering the opportunity to determine the appropriate galof these two parameters when-
ever the scattering is sensitive to the depth of the potantiae interior. It was thus possible
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Table 3.1: Parameters of the density dependencies favoured DDM3YBamd3Y1 (n=1) interac-
tions, and the corresponding nuclear matter compre$asili [22]

Interaction C o 16 K (MeV)
BDM3Y1-Paris 1.2521 1.7452 fm 1.0 270
BDM3Y1-Reid 1.2253 1.5124ftn 1.0 232
DDM3Y 1-Paris 0.2963 3.7321 3.7384fm 176
DDM3Y1-Reid 0.2845 3.6391 2.9605fm 171

to evaluate the incompressibilify in a-particle-nucleus systems by Khoa etal.[22], the val-
ues summarized in Table | giving the most credible resulte Farameters that describe the
corresponding density dependencies of these interacdr@summarized in Table 3.1. From
the inspection of the results listed in this table we seexXan®le that for complete overlap,
the BDM3Y1(Paris) interaction is reduced in strength byadaof f(2p0)/f(po) = 0.407.
This factor becomes 0.433 for the DDM3Y1 (Paris) interactishich means that the heavy-
ion interaction is roughly halved by the density dependemicen they completely overlap.

This table shows also that that the DDM3Y-tyfig) can be used to generate only léw
values, which are corresponding to a nuclear equation t# #0S) that is quite soft, while
the BDM3Y-typef(p) can be used to generakévalues higher than 200 MeV. In the past it
was thought that a very soft EOS is sufficient to explain tloengpt explosions in supernovas,
but more recent numerical studies indicate that this ishetase. The choice of 270 MeV as
provided by the BDM3Y still corresponds to a soft EOS but isatisfactory agreement with
a recent determination df (=290t 50 MeV) based upon the production of hard photons in
heavy-ions collisions [26]. Microscopic calculations beétmonopole resonances are also
providing K for nuclear matter from the energies of monopole vibratiorfanite nuclei. It
was concluded that a compression modulus in the range 21DtM2V should be expected
in such studies [27].

In the present work we are interested not only in the intevaaf a light ion, like the
a-particle with a heavy ion but also by the interaction betwieo heavy or even very heavy
nuclei for which the above approach to the density dependieed not necesarily appad
literam. For this reason another approach is considered, althdwgtuiclear compresibility
is also playing inside a principal role.

The above analysis leads to the conclusion that the heavgiuolear potential should
also contain a short-range repulsive cofg.. This short-range repulsion is a manifesta-
tion of the Pauli principle, which prevents the overlappofgthe wave functions of two
composite systems of fermions. The existence of the coleaslalso from other existing
microscopic calculations of effective local ion-ion pdiais such as the resonanting group
method (RGM) [28] and the two-center shell model(TCSM) [29]hese approaches are
leading to quantitatively different estimates of the héighdius, and diffuseness of the core,
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this being due, on one side, to the theoretical approacleesstives, and on the other side,
to the uncertainty in the precise knowledge about the intena of nucleons in the nuclear
medium or the properties of the nuclear matter. The actwal ff the repulsive core and its
intensity depend strongly on the extent to which the redisiohs of heavy ions are adia-
batic or sudden. A further uncertainty with regard to theeqmairameters is associated with
the influence of the individual characteristics of the cdased nuclei, including the binding
energies, the shape, and the nucleon distribution.

Due to these conditions of strong uncertainty we use in tlugkvan expeditive receipt
for determining the properties of the short-range repalsire.

As we noticed earlier a region of overlapping with doubledlaan density is formed
once the distance between the nuclei becomes lessthak, + R,, whereR, and R, are
the nuclear radii along the scattering (fission) axis. Theiraglof the densities increases
the energy of the nucleons in his region, and therefore asa® the energy of the complete
system. In the case of the complete overlapping«fer R, + R;) the increase is

AV =24, [B(2p0) — B(po)] (3.94)

In order to obtain the strength of the repulsive cdig. we assume that\l” must be
identified with the value of the heavy-ion interaction paiginat the coordinate origin

AV = Veor(0) + Vi (0) (3.95)
where the Coulomb force is neglected. Then, in the low-gnkmgt we can write
2AP [B(on) - B(p(J)] = Veor + VN(()) (3-96)

From the definition of the compresibility (3.92) and expamydihe binding energy around

the equilibrium valugy

d*B(p)
dp?

we obtain the following rough estimate for the height of tepulisive core for total overlap,

e.R=0

B(2po) ~ Blpo) ~ 372 (3.97)

Veor+ Vir(0) ~ Ay K (3.98)

Similar receipts to introduce a repulsive core can be fountthe literature [30]. They are
based on the knowledge of the equation of state and on the@etgnt that for a total overlap
of two nuclei a double density of the nuclear matter is oladinThe compressibility for cold
nuclear matter as a function of the relative neutron exéessp, — p,)/p was taken from
the Thomas-Fermi model [31].

It should be noted that raising the collision energy thectfté the Pauli principle will
be weakened.

The repulsive Migdal interaction

A double folding potential based on the effective Skyrmeraction is also choice for sim-
ulating a repulsive core in a two heavy-ion systems [32].his tase the nuclear potential
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between two heavy ions contains an attractive part and dsigpwne. Neglecting the spin
dependence, it can be written as

Va(R) = Co {F% (02 % p2) (R) + (01 # 2)(R)) + Fuulpr % p2><R>} (3.99)

wherex denotes the convolution of two functiorfsandg, i.e. (f * g)( f f(x
x')dx’ and

Ny —Z{Ny—Z

En,ex - fin,ex+ fi,n,ex 1141 ! 2A2 2

The set of parametexs, =300 MeV fn?, f;,=0.09, fex=-2.59, f;,=0.42, andf/,=0.54 are
taken from Ref. [33]. To solve this integral we consider theerse Fourier transform

(3.100)

Vy(R) = / e BV (q)dg (3.101)

where the Fourier transform of the local Skyrme poterﬁ}aﬂq) can be casted in the form
T En - Fex 3 ~ ~ 5 ~ ~

Vn(q) = Co B (pl(Q)pz(—q) + Pl(Q)Pz(—Q)> + Feopi(q)p2(q) ¢ (3.102)

Herep(q) and/;Q(q) are Fourier transforms of the nucleon densipés) and squared nu-
clear densitieg?(r). Expanding the nucleon densities for axial-symmetricritistions in
spherical harmonics we get

=3 pa (1) Y30(6,0) (3.103)
A
Then

7o) = 473 Valt | it (3.104)

P2lq) = Vir Z ol (65,0) > NN(Copd)?

NN
< Oo'f’QdTpx('f’)PM('f’)JA(qT) (3.105)
0

Fourier transform of the effective N — N interaction

The various components entering in the expression of tleetfe N — N interaction have
to be Fourier transformed in order to evaluate the osaildpitntegrals (3.64). When dealing
with the M3Y forces the radial dependence is of the Yukawa typ(—vr)/r. Then the

Fourier transform reads A

s
v 3.106
UY(Q) q + 1/2 ( )

For the delta kernei(r) the transform is

Ts(q) = 1 (3.107)
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3.3.4 The double-folding of the Coulomb interaction

The proton-proton Coulomb interaction is given by the walbln formula
vo(r) = — (3.108)

wheree? = 1.4399 MeV fm is the square of the unit charge. Then, neglecting theeat
distribution in the interaction he have the following doeibblding integral for the Coulomb

potential
P1 1 ,02 ”“2)
d dr 3.109
/’"1/ "TR+r—r | (3.109)

In the most simple case, when we assume that both nuclei Aszisal and the densities
homogenoug;(R) = p,;O(R; — R) [35]

bt ) R< R — R,
R {1- 3 Eupn
B - g oot | Ry Ry < R<Ri+ Ry
1, R> R, + R,

\

(3.110)
In the case when both charge distribution are non-sphetheastandard prescription is to
expand R + ro — r1| into powers of either; or r, by means of the formula [17]

1 dr !
| R+72— 171 | N Z 2\ + 1| R+ 7y \A1+1YA1#1 (W)Y (2 = w2) (3.111)
H1

where we have assumed that<| R — r, |. A similar expansion can be made in powers of
r1 under the conditiom, <| R + r; |. From these two expansions we may conclude

1 7’)‘17"’\2

= Z (1,()\1, )\27 )‘37 K1, f2, ,u?)) RAs+1 Y)\lul (wl)Y)\gug (WQ)Y)\gug (Q)

A1A2A3
H1p2 3

|.12 +7re — 17

(3.112)
provided thatR > r; + r3. The dependence of the coefficients on the indjceg., and s
can be determined from the condition that the expressiorstsakar under rotations of the
coordinate system

A A A3
a(A1, Az, As, pn, o, f13) = c(A1, A, A3) (3.113)
M1 M2 U3

When the nuclear densities are not overlapping the terntswit= \; + A\, are dominating.
Consequently

5 , (2A1 4 2X5)!
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Then
1 AMA A+ A A1y
B = Deung)| T T %
[ R+ra—m | o i 2~ = e
12
X Y)\1M1 (wl)Y)\zuz (WQ)YMJr)\z,*(m +u2) (Q) (3115)

Introducing the electric multipole tensors defined withpess to the space-fixed system
(primed axes in Fig.3.4)

Qry = / (1) Y2, (7) (3.116)

wherep, is the charge density distribution, the following analgtitormula is obtained for
the Coulomb interaction [36]

Al A A+ A 1

Vo(R) = = ZC(/\la)\Q) RMtAatl
XA M1 2 —H1 — M2
P2
QAIMQAQHQYMJMQ,*(MJWQ)(Q) (3'117)

Transforming the electric multipole operators into theingic coordinate(body-fixed) sys-
tem (analogous to (3.56))

ZD (w; QM (3.118)

we arrive at the form bellow provided we consider only quadta and hexadecupole defor-
mations [37]

Ve(R o) = D2
i \/f ;3 [Z1P2(COSBQ)Q20 +ZQP2(00861)Q20}
i \/;T ;5 [ZlP4(cosﬁg)Q4O +Z2P4(Cosﬁl)Q4o}
o127 Q201)Q'(2 22: 2 Ao (B1)d (5a)
p=2 \ H —p 0

(3.119)

If the fragments have ellipsodal shape and sharp surfaoesliffuseness is accounted only
by the nuclear interaction as pointed out in [38], then tleeteic multipole moment of frag-
ment 1 reads

o dr R1(Q)
0 0

% / " ap o () [Ba ()] (3.120)

= 4mpo
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where
ai

- (=) ]

is the equation in polar coordinates of the radius vectopbgsoid 1. Using the following
integral formula for the Legendre functions [39]

+ Py, (z)dz 2(—k)"
/_1 (0 + ka7 ~ Gar D+ ke RS (3.122)

Ri(z) = (3.121)

we obtain for)\ even

VoA + 1

37.(c% — a?)M/? 3.123
W(Al +1)(M\ +3) (e —ay) ( )

/(1
Q,\(o):4

Introducing the definitions

2 2
22, = 22 R2a1’2 (3.124)
the Coulomb interaction reads [40]
lez > - 3 (25 + 2k)!
Ve(R, By, = ,
c(R:fr: 52) ZMZ (2 +1) 2]—1—3) (2k + 1)(2k + 3) (27)!(2k)!
X x kaPQJ(cosﬁl)ng(cosﬁg) (3.125)

When the fragments symmetry axes are alignedd.e= (3, = 0, Quentin showed that the
above double series is converging for| + |z2| < 1 and the final result is given, according
to [41], in closed form :

Ve

3212262 1 2 2
0\ 222 (14 11z} + 11a3)
1421+ 29)°
+ P, P, [% In(1 + z1 + x9)
LT

1 — 32y — 329 + 122129 — 4% — 422 (3.126)
1 2

3.4 Proximity Potential Model

One of the most simple macrocopic interaction between twWordeble bodies whose sur-
faces have small curvature and diffuseness was formulatéteiseventees on the basis of
the "proximity force theorem” [42]. Before that it was Bagk3] who derived a proximity
formul for two spherical nuclei. For that he considered tniimitely extended nuclear mater
distributions with flat surfaces with a distanceetween them. Then for the surface energy
per elementary surface the following Ansatz was choosed

le? = 27[1 —e(s)] (3.127)
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D(x)
R - R,
l xT l

Figure 3.5: Two nuclei are treated in the proximity approximation aslesslextended nuclear matter
distributions. Due to the curved surface of realistic nuitie distance) between two opposing points
will increase withzx. It is supposed that the radil; are large with respect to the minimal distance

the narower laying surface points.

where ,
N -7
v =0.9517 [1 — 1.7826 <T)

is the surface energy coefficient ang) is a function of the distance, which takes into
account the influence of the opposite matter distributidtesving these in mind the task is
to compute the surface energy for two spherical nuclei vathirR; and R,.

The first hypothesis made is that the two radii are large coegpt the distance be-
tween the two surfaces. Then, the nuclear surfaces can Wwedigpproximately as endless
extended nuclear matter distributions, with differenc tiow the surfaces are no longer flat
but curved. The curvature determines that the distdndeetween two opposite points on
the surfaces is no longer constant, but increase widee Fig.3.5).

Since the nuclei have spherical form, the dependende cdn be easily derived. For a
sphere section we have the following relation

MeV/fm

22 = 2RH — H? (3.128)

whereH is the thickness andthe halflength of the sphere’s section. In the present approx
mationH is large compared t&, and therefore the quadratic term in the above formula can
be neglected. We therefore obtain for the distabaes a function of: the following formula

D(x)=s+— + — (3.129)
Integrating (3.127) over the surface we obtain

Es =~(S1 + 52) — 27/ dS e(D) (3.130)
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Figure 3.6: The minimal distance between the surfagésthe shortest distance between the nuclear
surfaces. The anglé3} are describing the closest laying points. They must be ahited separately
for each distance between the two centers, each deformatideach orientation.

The first term in the above formula represents the surfaceygmd both nuclei. The second
one can be rewritten as

’y/ ds €(D):27T/ xdx €(D):7T/ d(x?) e(D) (3.131)
From (3.129) it follows easily that
1/1 1
dD = = | — + — ) d(2? 3.132
5 (7 ) 46 (3.132)
and therefore R R -
2y [ dSe(D) =4 #/ dD e(D 3.133
v [ dsep) = am B [T apen) (3.133)

This integral[™ dD e(D) is the proximity function which is usually denoted byz). The
factor R = RiR,/(R, + R,) is called the geometrical factor because it takes into acoun
the nuclear form. The proximity formula was thus deducedtfa spherical nuclei with
half-density radiiR, » and the account only of terms of the ord¢R, .

The nuclear proximity potential is then defined as the diffiee between the total binding
energy of the nucleus-nucleus system and the binding essegjithe separated nuclei at
infinity

V = —4nyRe(s) (3.134)
Thus, the content of the proximity theorem is that the s@@tance interaction energy can
be written as the product of a function depending onlysaand a factor, which takes into
account the shape of the two nuclei [42].

The extension of theorem for a deformed target and spheogctile was carried out
in [44] and for two deformed nuclei in [45].

We present in what follows the formalism for two deformedleuaccording to [45].

In order to incorporate the orientation in the potential,eaes of steps are fulfilled
namely a) both nuclei are axial symmetric and thus the pisileéatindependent of the Euler
angley and b) the intrinsic axes, ,(see Fig.3.4) are laying in the same plane and therefore
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also the dependence on the Euler angle is elimidatéuthis case the interaction poten-
tial depends only on three coordinatésr, 3;, 52). The minimal surface distances then
determined by the angle! (see Fig.3.6)

s = Min |R + Ry() — Ri ()| = |R+ Ry () — R (QY)] (3.135)

This angle is in its turn determined by a numerical variadiaterational procedure. The
iteration must be carried out separately for any given sebofdinates.

Contrary to the spherical case the overlapping deformeteautorms cannot have only
ones [46]. To overcome this problem the direction ofs taken parallel to the two-center
distanceR. Here we deal with a conceptual problem. The interactindaaudistributions
are so densly localized that they can be described only byooelinate. This is no longer
the case at high densities.

According to Ref.[42] the geometrical factor for two elliptoaxial paraboloids with tip
distances, radii of curvatureP; andp; in the principal planes of curvature through the tip of
paraboloid;, and an azimuthal angle between the principal planes of curvature

_ 1 1 1 1 1 1
R = + + + sin ©? + < + ) cos 2} 3.136
{P1P1 Pspsy <P1P2 P1P2> 4 Pipy Pypy 4 ( )

Due to the short-range of the nuclear potential only the eldskgions in Fig.3.6 are im-
portant and this is the justification for trading the defodmeiclei for two paraboloids. The
radii of curvature must be taken at the surface points speldify the angle® and in the
direction of their tangential plane. Due to the requirentieat s is the minimum distance
between the nuclear surfacess and—s/s are the normal vectors of the tangential plane of
nuclei 1 and 2, respectively.

For axially symmetric nuclei the radius of curvatureis along the unit vectoe, and
reads

[R2(6M) + R2(9M)]"?
R? +2R” — 2RR"
whereR' = 0R/06. The radius of curvature is alorg,(see Fig.3.7). First we define as

the radius of curvature with the principal plane parallehte intrinsicz-axis

P(OM) = (3.137)

p1 = R(OM)sin o™ (3.138)

The theorem of Meusnier yields a connection between the ohdiurvature through the
same point but in relation to different planes

pL = pCosy (3.139)

wherey is the angle between the normal vector and The angle? betweenk(6M) and the

normal vector is

1dR R

INote that this restriction has not been operated in the stfidlye orientation dependence of the double-
folding potential
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Figure 3.7: The display of the geometrical quantities necessary inahutation ofp

Besides, we infer from Fig.3.7 that

T
= M _
V=3 p
The last four equations are finally providing
R(6M) sin gM

p(M) = (3.141)

cos [2 — 6M — atar(4)]

This equation is undetermined at the tip of the nuclé\}sQ). However due to the axial
symmetry we have at this point
P(OM) = p(6™) (3.142)

As shown in ref.[47]R, which depends on the rate of curvaturef both interacting
nuclei, can be put in the form

R= (3.143)

where

(3.144)

and

K= (3.145)

and the argument of the proximity function will also depemdooientation angles

S—T’—R(O <1+ZO‘ Y)\M ¢_¢1)> R;O <1+ZO‘A)Y>\H7T_0 T+ ¢— ¢2)>

(3.146)



3.4 Proximity Potential Model 106

Figure 3.8: Comparison o different proximity functions. The proximifynction of Blocki et
al.(dashed line) increase when the nuclei are overlapping.

The next step consists in the determination of the proxifiuitction ¢(s). Bass used as an
empirical law an exponential function [43],

d

P(s) = T (3.147)
whered=1.35 fm, which later [48], upon better agreement with fasiata was modified to
6(s) = {dmy(Aexp(s/di) + Bexp(s/ds))} (3.148)

where A=0.0300 Mev !fm, B =0.0061 Mev 'fm, andd;=3.30 fm andd,;=0.65 fm, these
last two constants determining the range of the interaction

Blocki et al.[42] used the Seyler-Blanchard effectiVve- N interaction and the Thomas-
Fermi model and integrated numerically over the surfacegigiFermi-density profile

Po

) = I el — R(Q)) /0872
The result was
#(s < 1.2511fm) = —%(s — 50)% — 0.0852(s — s0)*
¢(s > 1.2511fm) = —3.437exp(—s/0.75fm) (3.149)

wheres,=2.54 fm In Fig.3.8 we comparg s) for the two Bass ansatz, (3.147,3.148) and the
Blocki one (3.149). It is noticeable the increase of the49)lansatz for negative which
corresponds to a compression energy as discussed in thedprgcsection. The second
ansatz of Bass (3.148) has also this tendency but insteagtrely repulsive. The repul-
sive behaviour of the proximity function (3.149) is causegdliee nucleon relative impulse
dependent term in the Seyler Blanchard interaction

—ri2/a
0(riz,pra) = ~328.61°—— (1 12) (3.150)

Tlg/(l bQ

with ¢=0.62567 fm and=392.48 MeV ¢
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3.5 Self-consistent methods

3.5.1 The Hartree-Fock+BCS

The LDM, which is based on a semiclassical description ohtindei, supplemented by the
shell-effect corrective energy, is only a poore substitot@ self-consistent calculation [50].
One of the main advantages of the self-consistent HF+BC&uledion is that it provides
simultanously both the single-particle and semiclasgicaperties of nuclei. The general
properties of the Hartree-Fock method were reviewed in §2], In what follows we will
sketch briefely the underlying ideas of this method.

According to the variational prnciple, the ground-statafi-body system is that com-
pletely antisymmetric stat&(1,..., A) which minimizes the expectation value of the cor-
responding Hamiltoniag¥ | H | V) subject to the condition thgt | ¥) = 1. This
can be included in the variational problem by introducing tiagrange multiplie#, and
demanding a minimum of

(U | H|O)— E(¥|T) —1) (3.151)

This implies
0V | H|W¥)=0, (3.152)

for all variations of| V), together with
SE((U |W¥)—-1)=0 (3.153)

for arbitrary variations)E. Since| V) is arbitrary, the variational principle leads to the
Schrodinger equation
(H-—E)|V)=0 (3.154)

The variational method cocnsists in introducing a trial @wnctionf (¢, ¢o, - . .) depending
on a certain number of parametéys, ¢», . . .) = q. These parameters are varied untill

(W[ H V) - ((¥]|¥)—-1) =H(q) — E(N(q) —1) (3.155)
reaches a minimum. Necessary conditions for a stationdng \aae

OH ON
—F
dq; dq;

—0; N(q) =1 (3.156)

The Hartree-Fock approximation is an application of theateomal method, which utilizes
a large number of variational parameters. Hartree’s idemtwvascribe to each particle a
state, or single particle orbital(r;), so that the total wave-functioh is a product of these
orbitals. Fock introduced antisymmetry by making a Slattedninant rather than a simple
product

U(l,...,A) = det[;(r;)] ¢_ Z Yor(rs)) ... on(r;,) (3.157)

1
VAl
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Table 3.2: Parameters of the Skyrme interactions Sll and to SVI

Interaction to t ty t3 T w
(MeV-fm3) (MeV-fm°) (MeV-fm®) (MeV-fm®) (MeV-fm?)
Sli -1169.9 586.6 -27.1 9331.1 0.34 105.0
Sl -1128.75 395.0 -95.0 14000.0 0.45 120.0
SIvV -1205.6 765.0 35.0 5000.0 0.05 150.0
SV -1248.29 970.56 107.22 0.0 -0.17 150.0
SVI -1101.81 271.67 -138.33 17000.0 0.583 115.0

In the above formula the symbalg, ... j4) are a permutatio® of the labels 1,.., A and
(—1)% is the signature of the permutation. To ensure that the \iavetion| ¥) is normal-
ized, the orbitalg);(r) form an orthonormal set.

Brink and and Vautherin were the first to carry out HF calcatz reviving a very simple
form of effective interaction, originally suggested by 8kye, which contains only a small
number of adjustable parameters [53]. It is of the fafmt+ V5 where

Vs = to(1+20Py)6(r1a) + %(1 + 21 P) (K (rs) + 6(r12)k?)
+ tg(l —+ $2P0>5(T12)k/ ' 5(T12>k + 'ZW(O'l + 0'2) . (kl X (5(7’12)’{7) (3158)

where P, is the spin exchange operatdr,is the operatof—:V) acting to right andk’ to
left. V3 incorporates a suitable density dependence. Originalliagt taken to be a contact
three-body force

Va = t36(r12)0(r23) (3.159)

but subsequently it has been found preferable to considedénsity dependent two-body
force ;
Vy = 2L+ 2aPr)p3o(r) (3.160)

(for x3 = 1, a = 1, this force makes the same contribution to the Hartree-femekgy as
doesVs.

There are several sets of Skyrme force parameters whichldesre fitted to reproduce
nuclear properties over a wide region of the the Periodidelabhese have names S-I, S-lI,
etc. and are listed in table 3.2 for 5 choices. In most caseexibhange parameters are
set to zerogs = 1 anda = 1. This leaves six real parametes o, t1, t2, t3 and W, the
strength of the spin-orbit interaction. A valuedf =120MeV.-fm® gives reasonable spin-
orbit splittings for the eigenvalues near magic nuclei. Vhgous Skyrme forces can be
characterized by the value 6f, the amount of density dependence.

The Skyrme forces not only reproduce a large amount of nudega from a small num-
ber of adjustable parameters and they are exceedingly easget The zero range nature of
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the force ensures that the Hartree-Fock fields are localirefiadt are simple polynomials of
local densities.

In our study for the HF part of the interaction we choosed tkgri8e interaction Slli
[54], which succeded to reproduce satisfactory the sipgigicle spectra of even-even nu-
clei. The difference between the binding energy computed @ill and the experimental
one appears to be, for a large number of nueteh MeV [55]. It also produces a fairly well
N — Z dependence of the binding energy[56]. The present workiderssnuclei that are
not in a closed shell configuration. Thus, the level occapeativill have a large effect on the
solution of the HF equations.

Usually the HF method is extended to the Hartree-Fock Bagmy (HFB) formalism by
using a mixture of different configurations in place of a $n§later determinant. However,
when dealing with a Skyrme force which has been simplifiedhgbat the bulk properties
of the nucleus are reproduced, one would have to introdudéi@all parameters in order to
guarantee that sensible pairing matrix elements are adtain

Following Vautherin [57] we assign to each orbitgl an occupation number;, = vZ,
whereu? + v = 1, uj, = u;, andv;, = —vy. In terms of the density(r) = 2 3"} nx|or(r)|?
the HF+BCS total energy, that has to be minimized, reads

1
EHF+BCS =Tr [(T -+ §V)p:| + Ep (3161)

where 2 X
=" (1-5) > [ arlory (3.162)

is the expectation value of the kinetic eneryyy= Tr(p0) enters as the Hartree-Fock-like
potential,& being the antisymmetrized effective two-body interacti®he primed sund_’
denotes a sum over all HF orbitals having projections of ¢ta tangular momentun on
the z-axis(2; > 0. To the total energy we added the pairing energy

E, = —§ {Z [nk(l — nk)%] } (3.163)

For BCS-like calculations, the matrix elementgdfetween HF states is taken to be constant

G =~ [ar [aroimsi)itr oot (3.164)

Varying the normalized single-particle wave functiefjsand their amplitudes, under the
additional constraind; >, (0., -nx — N;), (7 = p,n), which ensures that on the average
the system contains the correct number of neutl®nand protonsZ, we are lead to the
standard HF and BCS equations [57].

The occupations,, are determined at each step of the HF iterative calculasamthe
HF eigenvalues;, and they are employed at the next step to construct the HF. fighe
pairing force constant is

MeV (1 =p,n) (3.165)
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The constantz,, was adjusted in such a way to obtain the experimental pagyapg

A, =GY u (3.166)
k

In the deformed HF calculations one have to optimize thesbahkich is choosen to corre-
spond to an axial symmetric deformed harmonic-oscillattn fwrequencies,; andw.. Such
a basis is characterized by the deformation parameterw, /w, and harmonic oscillator
lengthb = /mwy/h, with w3 = w?w.. The basis is cut off afteN,,.. major shells, where
Nyna=10 or 12 for the nuclei emerging in the sffCf [58].

The next step consists in mapping out the potential energyesuby constraining our
HF+BCS calculations in which a quadratic constr%r{@ — Q)? is added to the energy
functional (3.161) [59]. Heré€), is a specified targed value of the mass quadrupole moment.
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