
Chapter 3

Potential Energy

The macroscopic interaction energy between two heavy ions is usually given as a sum of
a Coulomb-energy and a nuclear term. The problem of determining the nuclear part of the
interaction is one of the important and as yet not completelysolved problems of low-energy
nuclear physics.

One of the most common ways to obtain information about the interaction of two nu-
clei is to analyze the experimental data on the elastic scattering of heavy ions. This is done
in the framework of the optical model, the overwhelming majority of studies being based
on the Woods-Saxon form of the nuclear potential, which was originally used to describe
elastic neutron-nucleus scattering. There are well-knon difficulties with the optical model
associated with ambiguity in the determination of the parameters of the potential due to
incompleteness of the experimental data sets. Moreover theresult the analysis of the ex-
perimental data is to large extent influenced by the particular assumption made on the radial
dependence of the potential. By adjusting the parameters ofthe Woods-Saxon potential using
specific experimental data, a correct description of the behavior of the potential in a narrow
range of distancesR is achieved. For a physically justified parametrization thebehavior of
the potential outside the region of sensitivity must be stable with respect to small changes in
the masses of colliding nuclei. In contrast, an unappropriate parametrization may result in
a phenomenological potential which becomes physically meaningless outside the region of
sensitivity.

Therefore it is natural to seek for an alternative to the Woods-Saxon potential, like for
example the theoretical calculation of a ion-ion potential, which despite its approximate
nature, can correctly reflect the qualitative dependence ofthe interaction masses, the collision
energy, and the distance between nuclei.

Due to the complexity of the many-particle problem in the heavy-ion collisions or de-
cays, it is customary analyzed within two extreme approximations - the adiabatic and the
sudden(diabatic) models.

In the first approximation the approach(distancing) of the centers of mass of the collid-
ing(decaying) ions is accompanied by a smooth adiabatic change in the internal structure of
the ions, the equilibration of the nuclear densities being energetically favored for each dis-
tance. When an adiabatic collison(decay) occurs, it is necessary that the relaxation rate of
the internal degrees of freedom of the target(larger cluster) be large compared with the trans-
lational velocity of the projectile(lighter cluster) In adiabatic models the liquid-drop model
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lead to a correct connection between the properties of normal nuclear matter and the behav-
ior of the potential at the edge of the nucleus but its applicability fails in the interior region
of the potential, i.e. in the strong overlapping region of the colliding or decaying nuclei.

In the second approximation, the collision(decay) occurs so rapidly that the internal struc-
ture of the ions cannot change significantly during the interaction time. In this case, the
nucleon densities of the nuclei in the region of their overlap are simply added, and this, un-
avoidably leads to the occurence of a strong short-range repulsive core in the potential In
other words, models based on the suden approximation with allowance for the Pauli prin-
ciple predict the existence in the interaction potential ofa strong repulsion when the ion
densities are sensitively overlapping, thus preventing the nuclei from penetrating each other.
This property is specific for composite systems of fermions and is not related to the repulsive
core in the nucleon-nucleon potential. The existence of a short-range repulsion follows from
existing microscopic calculations of ion-ion interactionbased on the approximate solution
of the many-particle Schrödinger equation with a two-bodynucleon-nucleon potential.

A measure of the adiabaticity or diabaticity is given by the ratio k/kF , wherek =√
(2m/~2)E/A is the mean translational momentum of a nucleon in the projectile, andkF

is the Fermi momentum for the internal motion of nucleons inside the nucleus. Ifk ≫ kF ,
a sudden collision can be expected. In the opposite case, case i.e. k ≪ kF an adiabatic
collision occurs. Let us make a rough evaluation for the caseof cold fission. For the Fermi
momentum we take the infinite matter ansatz [1] , i.e.kF = (3π2ρ/2)1/3, which for a con-
stant density readskF = (9π)1/3/2r0). ForA we take the value 100 corresponding to a
possible cluster emitted in the cold decay of252Cf and forE a value of 200 MeV comparable
to the cold decayQ-value. The evaluation givesk/kF ≈ 0.25. For nuclei from the super-
heavy island (Z=112-122) synthesised with in cold reactions we obtain values within the
same order of magnitude. This means that cold fission and fusion reactions of heavy and are
superheavy nuclei are apparently inbetween the two extremes. For this reason both model
will be applied throughout this work and especially the sudden model.

3.1 Liquid-Drop Model

The most simple example of adiabatic model in calculating the interaction potential between
two heavy ions is the method based on a representation of the nucleus as a liquid drop of
incompressible nuclear matter. The Liquid drop Model (LDM)was originally conceived in
the mid-thirties of the last century by C.F. von Weizsäckerwith the task to calculate ground
state nuclear binding energies [2] . It was recognized at that time that gross properties of
nuclear fission could be understood in terms of the shape dependence of the surface and
electrostatic energies. One of the most simple Ansatz of theLDM mass formula is the sum
of the individual protonMZ and neutronMN masses reduced by the binding energy [3].

MLD(N,Z) = MNN +MZZ

− cVA + cSA
2/3Bsurf +

3

5

e2Z2
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(
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5

6
π2 d2

r2
0A

2/3
− 0.7636

Z2/3

)
(3.1)

In deriving eq.(3.1) it was assumed that the nuclear matter in the interior is uniform and in-
compressible so that the radius of the spherical nucleus is proportional toA1/3. The assump-
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tion of incompressibilty means that in a collision of heavy ions one can admit all volume
preserving deformations of their shapes.

The last three terms in the above formula are accounting for the binding energy . The
first of these terms is called thevolume energyand is proportional to the total number of
particles.

3.1.1 The Geometrical Surface Energy

The next term in (3.1) is thesurface energy, the factorA2/3 being proportional to the surface
area for a spherical nucleus. To deal with different types ofsurfaces the quantityBsurf is
introduced. It relates the surface energy of a deformed nucleus,Esurf = σ

∫
dS (σ-surface

tension given in units of MeV/fm2) to that of a spherical nucleus,E0
S = 4πR2

0σ, with the
same volume :

Bsurf =
Esurf

E0
S

=
1

4πR2
0

∫
dS (3.2)

The integration is performed over the volume of the nuclear configuration, whose magnitude
is held fixed at4πR3

0/3 as the nucleus deforms. The equivalent-sharp-surface radiusR0 of
the spherical nucleus is related to the nuclear-radius constantr0 by

R0 = r0A
1/3 (3.3)

In cylindrical coordinates (3.2) reads

Bsurf =
1

2R2
0

∫ zR

zL

ρ(z)

√

1 +

(
dρ(z)

dz

)2

dz (3.4)

wherezL andzR are the left and right tips(poles) of an axial-symmetric nucleus. Using the
parametrization of Myers and Swiatecki [3] we have that

E0
s = 17.9439

[
1 − 1.7826

(
A− 2Z

A

)2
]
A2/3MeV (3.5)

Pashkevich [4] proposed another ansatz

E0
s = 21.13

[
1 − 2.3

(
A− 2Z

A

)2
]
A2/3MeV (3.6)

3.1.2 Yukawa-Plus-Exponential Potential

Eq.(3.1) results from an expansion of the nuclear energy in powers ofA−1/3 and relative
neutron-proton excessI = [(N − Z)/A]2 (leptodermous expansion) [3]. This expansion is
valid only if all geometrical dimensions of the drop are large compared to the surface thick-
nes, and consequntly breaks down for two nearly touching nuclei and for shapes with small
necks, for example around the scission point in fission or first contact in heavy-ion reactions.
The liquid-drop formula yields a spurious and undesirable sensitivity of the calculated fission
barriers on unphysical fine details of the shape in the neck region. Therefore a generalization
of the liquid-drop formula was proposed which satisfies the following conditions :
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• It should reproduce the result of the old liquid-drop formula for spherical configura-
tions.

• It should not be sensitive to to the high multipole wiggles onthe surface of the drop.

• There should be an attractive nuclear interaction energy between two separated frag-
ments besides the Coulomb repulsion. The range of this attractive force should extend
beyond the equivalent sharp radius by roughly the range of the nucleon-nucleon inter-
action. One should require the minimality of the surface energy of the two half-spaces
of nuclear matter at the instant when they touch.

In the original single-Yukawa modified liquid drop model [5]the surface energyEsurf =
E0

SBsurf was replaced by

En = EY (a, cS) +
2

3

r0
a
cSA (3.7)

where

EY (a, as) = − cS
8π2r2

0a
3

∫ ∫
e−|r−r

′|/a

|r − r′| d
3rd3r′ (3.8)

and the quantitya is the range of the Yukawa folding function. In the limita → 0, eq.(3.7)
yields exactly the surface energy of the liquid-drop formula (3.1). The effective surface-
energy constantcS depends on the relative neutron-proton excess

cS = aS(1 − κSI
2) (3.9)

whereaS is the surface energy constant andκS is the surface-asymmetry constant. The
second term in (3.7) cancels the volume-energy term presentin the double volume integral of
the Yukawa function. However the single-Yukawa potential violates the requirement that for
a saturating nuclear system the interaction energy per unitarea reach a minimum at touching.
This saturation condition can be satisfied by the use of the Yukawa-plus-exponential form of
the interaction [6]

En = − cS
8π2r2

0a
3

∫ ∫ ( |r − r′|
a

)
e−|r−r

′|/a

|r − r′| d
3rd3r′ (3.10)

The above integral would be zero if the integrations overr andr′ were both extended over
all space. Consequently this new form of the potential does not contain a volume term and
does not require volume renormalization. A two-fold application of the Gauss divergence
theorem transforms (3.10) into the double surface integral[7]

En = − cS

8π2r2
0

∮ ∮ {
2 −

[( |r − r′|
a

)2

+ 2
|r − r′|

a
+ 2

]
e−

|r−r′|
a

}

× (r − r′) · dS(r − r′) · dS′
|r − r′|4 (3.11)

This is a four-fold integral which has to be computed numerically for arbitrary shapes. For
an axially symmetric, but otherwise arbitrary shape, one ofthe azimuthal integrations can be
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performed trivially. With the nuclear surface specified in cylindrical coordinates (ρ, φ, z) by
the equation

ρ = ρ(z) (3.12)

we obtain a threefold integral

En =
cS

4π2r2
0

∫ zR

zL

∫ zR

zL

∫ 2π

0

{
2 −

[( |r − r′|
a

)2

+ 2
|r − r′|

a
+ 2

]
e−

|r−r′|
a

}

× ρ(z)

[
ρ(z) − ρ(z′) cosφ− dρ(z′)

dz
(z − z′)

]

× ρ(z′)

[
ρ(z′) − ρ(z) cos φ− dρ(z′)

dz
(z′ − z)

]
dz dz′ dφ

|r − r′|4 (3.13)

where the integrations overz ansz′ extend from the left tip of the shape located atzL to the
right one located atzR and theφ integration extends from 0 to 2π. For an axially symmetric
shape the distance|r − r′| is given by

|r − r′| =
√
ρ2(z) + ρ2(z′) − 2ρ2(z)ρ2(z′) cosφ+ z2 + z′2 − 2zz′ (3.14)

The nuclear finite-range energy corresonding to a sphere reads

E0
n = E0

S

{
1 − 3

(
a

r0

)2

+
(
1 +

r0
a

)[
2 + 3

a

r0
+ 3

(
a

r0

)2
]
e−

2r0
a

}
(3.15)

Taking the free parameters to have the valuesr0 = 1.18 fm, a =0.65 fm, aS =21.7
MeV andκS =3.0, Krappe, Nix and Sierk [6] were able to obtain a good description of
a large collection of experimental data relating to the nuclear masses and deformations, the
fusion and fission barriers, and the differential cross-sections of heavy-ion small angle elastic
scattering .

To compare the surface reduced energy with the finite-range one we represented in
fig.3.1, the upper panel, the two curves as a function of the elongationε for two different
α3. It is to be noticed that the difference the two curves increase withε. The finite range
energy has a smaller rate of increase. Beyondε=1, when rupture occurs, the surface energy
is saturating.

3.1.3 Coulomb Potential

The last term in eq.(3.1) is theCoulomb energyand contains the factorBcoul which relates
the actual Coulomb energy of a deformed nucleus,

ECoul =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r − r′| , (3.16)

to that of a spherical nucleus,E0
C = 3

5
e2Z2

R0
, of the same volume

BCoul =
ECoul

E0
C

(3.17)
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Figure 3.1: Surface and finite-range reduced energies (upper panel), Coulomb reduced energies with
and without finite-range corrections (middle panel) and LDMdeformation energies with and with-
out finite-range corrections (lower panel) for reflexion-symmetric shapes (α3 = 0) and reflexion-
asymmetric shapes (α3 = 0.15).

and in cylindrical coordinates

BCoul =
1

2R2
0

∫ zR

zL

Φs(z)

(
ρ(z)2 − zρ(z)

dρ(z)

dz

)
dz (3.18)

where

Φs(z) =
3

4πR2
0

∫
dz̄

k√
ρ(z)ρ̄(z̄)

{[
ρ(z)ρ̄(z̄) + ρ̄2(z̄) + (z − z̄)ρ(z)

dρ̄(z̄)

dz̄

]
K(k2) − 2ρρ̄D(k2)

}

(3.19)
K(k2) andD(k2) = [K(k2) − E(k2)]/k2 being complete elliptic integrals of the argument

k2 =
4ρ(z)ρ̄(z̄)

(z − z̄)2 + (ρ+ ρ̄)2

(see [8], p.74, eq.(7.10)).
The Coulomb energy of a charged sphere is according to Myers and Swiatecki [3]

E0
c = 0.7053

Z2

A1/3
MeV (3.20)

and to Pashkevich [4]

E0
c =

32

(Z2/A)cr

Z2

A1/3
(3.21)
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Figure 3.2: LDM deformation energy surface plot inε andα3 for the heavy nucleus240Pu.

with
(

Z2

A

)

cr
= 45.

To account for finite-range effects, although small in the Coulomb the energy (see the
middle panel of fig.3.1), we have to add the correction

δE0
C = E0

C

{
−5

(
a

r0

)2
[
1 − 0.375

a

r0

(
5 − 7

(
a

r0

)2
)

− 0.75e−2r0/a

(
1 + 4.5

a

r0
+ 7

(
a

r0

)2

+ 3.5

(
a

r0

)3
)]}

(3.22)

3.1.4 Deformation Energy

The macroscopic part of the deformation energy is computed according to the LDM, i.e. the
actual total energy minus the value for a sphere (see [8], p.14, eq.(1.74))

ELDM = Esurf − E0
s + ECoul − E0

c (3.23)

One of the most convenient parametrization of the nuclear surface used in the computa-
tion of the deformation energies for arbitrary distortionsis the Cassini parametrization [4]. In
this parametrization an axially deformed shape can be constructed in cylindrical coordinates

ρ =
1√
2
[G(x)1/2 − R2(x)(2x2 − 1) − εR2

0]
1/2 (3.24)

z =
sign(x)√

2
[G(x)1/2 +R2(x)(2x2 − 1) + εR2

0]
1/2 (3.25)
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Figure 3.3: LDM deformation energy surface plot inε andα4.

where
G(x) = [R4(x) + 2εR2

0R
2(x)(2x2 − 1) + ε2R4

0]
1/2

.
The curveR(x) is expanded in Legendre polynomials

R(x) = R0(1 +
∑

m

αmPm(x)) (3.26)

Thus a deformed shape in Cassini parametrization is described by the following defor-
mation parameters:ε, αm, m = 1, 2 . . . ,M . In the calculation of the finite-range part of the
potential there is a difference compared to Krappe et al. Onetakesr0=1.16 fm anda =0.68
fm.

In the lowe panel of fig.3.1 the LDM deformation energy is ploted againstε. For reflexion-
symmetrical shapesα3 = 0 the barrier is smaller than for reflexion-asymmetrical shapes.
But the most visible feature of this plot is the tremendous decrease of the barrier when finite-
range corrections are introduced.

In fig.3.2 the LDM energy surface plot is given in terms of the deformationε, which
describes symmetric elongations andα3, which describes octupole or reflexion-assymmetric
distortions. All higher deformations are keeped fixed,α4,...,9=0. Consequently the LDM
predicts a symmetrical fission barrier, centered on the directionα3 = 0. Since the octupole
deformation has similarities with the mass-asymmetryη = (A1 − A2)/(A1 + A2) then the
most favourable valley for fusion is also the symmetric one.If instead ofα3 the hexade-
cupole deformationα4 is variated, keeping again fixed all other deformationsα3,...,9=0 an
asymmetric surface is obtained (see Fig.3.3). The lowest barriers is again encountered along
α4 = 0.
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It is important to note that models based on the incompressible liquid drop model of the
nucleus lead to the correct connection between the properties of normal nuclear matter and
the behavior of the interaction potential at the edge of the nucleus. At short-distances they
give a weak attraction and do not have a repulsive core.

3.2 Shell Corrections

3.2.1 Phenomenolgical shell corrections

The phenomenological method introduced by Myers and Swiatecki [3] is a uncomplicated
functional form which enables the rapid evaluation of nuclear shell corrections. It is conve-
nient to use in the cluster decay or cold fission due to the factthat the fragments are close to
their ground state deformations. The Myers-Swiatecki shell energy is expected to describe
the potential energy of fragments far off the line ofβ stability with sufficient accuracy, as it
accounts well for the binding energies and quadrupole moments of a large number of nuclei
throughout the Periodic Table.

The shell correction of Myers and Swiatecki [3] for a nucleuswhich stands only spheroidal
deformations reads

Vshell = C

[
F (N) + F (Z)

(A/2)2/3
− cA1/3

]
(1 − 2θ2) exp(−θ2) (3.27)

where

F (m) =
3

5

M
5/3
i −M

5/3
i−1

Mi −Mi−1

(m−Mi−1) −
3

5

(
m5/3 −M

5/3
i−1

)
(3.28)

andMi andMi−1 denote the nearest(spherical) magic numbers

Mi−1 ≤ m ≤ Mi (3.29)

For spheroids,θ in eq.(3.27) is related to the Hill-Wheeler parameterσ [49] by

θ2 =
(r0A

1/3)2σ2(1 − 1
7
σ)

5a2
(3.30)

and to the major semiaxisz by

σ = ln

(
z

r0A1/3

)
(3.31)

The parameters entering in the above formula areC=5.8 MeV, c=0.325 anda=0.444r0,
r0 =1.2249 fm.

If the shape is non-axial(γ 6=0), but still ellipsoidal, the shell corrections can be obtained
by a curvature-dependent integration [9]

Vshell =
C

4πr2
0A

4/3

∫
k

{[
F

(
N

k3

)
+ F

(
Z

k3

)]
22/3k3 − cA

}
dS (3.32)

where

k = 2r0A
1/3

[
1 − α

R‖ + R⊥
+

α

|S|

∫
dS

R‖ + R⊥

]
(3.33)

whereR‖ = 1/κ‖ andR⊥ = 1/κ⊥ are the curvature radii, the curvatures,κ‖ andκ⊥, being
defined in (3.144-3.145).
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3.3 Folded Potential Model

The folding model of the potential between two nuclei has been used widely to generate the
real parts of bothα-nucleus and heavy-ion optical potentials. Antisymmetrization of the sys-
tem is taken into account by considering single-nucleon ’knock-on’ exchange terms in which
the interacting pair of nucleons in exchanged. The succes ofthis potential in describing the
observed elastic scattering of many systems suggests that it produces the dominant part of
the real optical potential [10, 11].

3.3.1 Microscopical Foundations

Although there is presently no microscopic theory for the nucleus-nucleus scattering, a mi-
croscopical foundation of the optical potential for the scattering of two composite nuclei is
available within the framework of the Feshbach theory of nuclear reactions [12].

If the exchange of nucleons due to antisymmetrization is initially ignored then the total
wavefunction for the colliding projectile (p) plus target (t) system, may be expanded in terms
of the complete set of internal eigenstates of the individual nuclei

Ψ =
∑

ij

Rij(r)φpi(ξp)φtj(ξt) (3.34)

whereRij describes the relative motion when the nuclei are in their internal states labelledi
andj. If i = 0 andj = 0 denotes the ground states of the nuclei, then the radial wavefunction
componentR00 gives the elastic scattering. The problem is to find an effective interaction,
or optical potential,UE that will generateR00 when plugged in the one-body Schrödinger
equation [

−∂~
2

2µ
∇2 + UE(r)

]
R(r) = ER(r) (3.35)

In the Feshbach theory the Hilbert space is partioned into the prompt (the first state)P
and delaying (the second state)D components which are orthogonal . The open channels
(resonant states) are included usually inP and the closed channels inD. Suppose thatP
consists only of the elastic channelχ00. Feshbach introduced projection operatorsP andQ
onto the spacesP andD. Writting (3.34) in the form

Ψ = PΨ +QΨ (3.36)

where
PΨ = R00(r)φp0(ξp)φt0(ξt), QΨ =

∑

i,j 6=0,0

Rij(r)φpi(ξp)φtj(ξt) (3.37)

and introducing the notations

H00 ≡ PHP, H0n ≡ PHQ, Hn0 ≡ QHP, Hnn ≡ QHQ, (3.38)

where the label 0 stands for the ground state andn for the closed channels, and multiplying
the many-body Schödinger equation satisfied byΨ

(E −H)Ψ = EΨ (3.39)
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from the left byP andQ we obtain

(E −H00)(PΨ) = H0nQΨ , (E −HQQ)(QΨ) = Hn0PΨ (3.40)

Since the many-body HamiltonianH = H0 + V is the sum of the Hamiltonians for the
internal degrees of freedom of the projectile and target andthe kinetic energy operator for
their relative motion(H0) and the potential(V ), Feshbach restricts the class of projection
operators to those for which

H0n = V0n Hn0 = Vn0 (3.41)

The coupled Feshbach equations (3.40) can be formally solved as follows:

QΨ = lim
η→0

(
1

E −H + iη

)

nn

Vn0PΨ (3.42)

The above expression includes the boundary condition that there is no incident wave in the
subspaceD. The iη in the denominator of (3.42) is introduced in case some of theopen
channels are included inD. Substituing (3.42) the first equation from (3.40) yields

(E −H0 − UE)PΨ = 0 (3.43)

where

VE = V00 + lim
η→0

V0n

(
1

E −H00 + iη

)

nn

Vn0 (3.44)

The separation of the radial part in (3.43) leads to the desired equation (3.35). The first term
in the effective interaction (3.44),V00, is associated with the prompt(elastic) process and it is
simply the folded potential

V00 = VF (r) ≡ 〈φp0φt0 | V | φp0φt0〉 (3.45)

whereV is the (real) interaction between the two nuclei. The secondterm describes the
time-delaying effect of coupling the elastic channel (spaceP) with the channels from space
D), propagation inD as given by(1/E −H00 + iη)nn and then reemission intoP. It is often
denoted in the literature by∆UE and referred as thedynamic polarization potential(DPP).
We see that∆UE is energy dependent, complex and nonlocal. These properties are conse-
quences of the presence of the propagator(1/E −H00 + iη)nn. The imaginary part arises
from energy-conserving transitions to open nonelastic channels in which flux is lost from the
elastic channel. The real part comes from virtual excitations, corresponding to readjustment
of the two nuclei when they began to interact but which are reversed and they return to their
ground states. Energetically closed channels can contribute to the real part of∆UE . The dis-
persion realtion between the real and imaginary part of∆UE is derived in [12]. Nonlocality
of ∆UE means that if the system is excited into a nonelastic channelat positionr, then it
will in general return to the elastic channel at another position r′ 6= r.

It is assumed that the interactionV is a sum of local two-body potentials

V =
∑

pt

vpt (3.46)
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with p labelling a nucleon in the projectile andt one in the target,
The individual internal wave functionsφp(t)i(ξ) in (3.34) are each taken to be antisym-

metrized. Since the Pauli principle requires that the totalwavefunctionΨ must also be
antisymmetric under interchange of nucleons between the two nuclei, the so-calledknock-on
exchangeterm is introduced invpt

vpt → vpt(1 − Ppt) (3.47)

wherePpt is the operator that exchanges all coordinates of these two nucleons. In a collision
the knock-on exchange results in a target nucleon being ejected and replaced by the projec-
tile nucleon following their mutual interaction. Consequently the first term of the effective
potential (3.44) is replaced in this approximation by

V00 = VF (r) ≡ 〈φp0φt0 |
∑

pt

vpt(1 − Ppt) | φp0φt0〉 (3.48)

By interchanging the spatial positions of the two nucleons the centres of mass of the two nu-
clei are affected together with their separation distancer′ 6= r. The corresponding exchange
contribution to the potentialV00 becomes nonlocal.

3.3.2 Double-Folding Integral

Consider two heavy ions with one-body ground-state deformed densitiesρ1 andρ2 and center
of masses separated by the distanceR. Then the interaction (3.48) betwen these two ions
can be evaluated as the double folding integral of these densities

V (R) = 〈φ10φ20 | V | φ10φ20〉 =

∫
dr1

∫
dr2ρ1(r1)ρ2(r2)v(r12, ρ1, ρ2) (3.49)

wherer12 = R + r2 − r1. For simplicity, the spin and isospin was ignored. In the above
formula there is allowance for a possible density dependence ofv.

The evaluation of the above folding integral is facilitatedby the convolution theorem
which states that the Fourier transform of the folded quantity is simply the product of the
transforms of the individual component functions [14, 15].Introducing the Fourier transform
Ṽ (q) of the double-folding integral (3.49) through

Ṽ (q) =

∫
dr exp(iq · R)V (R) (3.50)

the double-folding integral (3.49) writes

V (R) = (2π)−3

∫
dqṼ (q) exp(−iq · R) (3.51)

where the Fourier transform of the double-folding potential reads

Ṽ (q) = ρ̃1(q)ρ̃2(−q)ṽ(q) (3.52)
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Figure 3.4: The position and space orientation of the two nuclei is described by the center-to-center
distance and the Euler anglesαi, βi, γi which are giving the transformation to the intrinsic system.

Consider the geometry from Figure 3.4, where the unprimed axis corresponds to the lab-
oratory frame, the primed to the molecular (dinuclear system) frame and the double primed
to the body fixed framed of each nucleus. The density distribution ρi(r

′) in the molecular
frame is related to that in the body-fixed frame by Euler rotations

ρi(r
′) = R(αi, βi, γi)ρi(r

′′) (3.53)

In the above formula we adopted for each set of Euler angles,(αi, βi, γi), the condensed
notationωi. We consider that the density distributions in the principal axes,ρi(r

′′), is axial
symmetric

ρi(r
′′) =

∑

λ

ρ(r′′i )Yλ0(r̂
′′
i ) (3.54)

and that its shape is given by a Fermi distribution

ρi(r
′′) =

ρ0

1 + e
r′′
i
−ci
a

(3.55)

with ci = c0(1 +
∑

λ≥2 βλYλ0(r̂
′′
i )). The constantρ0 is fixed by normalizing the proton

and neutron density to theZi proton andNi neutron numbers, respectively. This condition
ensures the volume conservation. The half radiusc0 and the diffusivitya are taken from the
liquid drop model [16].

Using the transformation property of the spherical harmonics under Euler rotations [17]

R(ωi)Ylm′(θ, φ) =
∑

m

Ylm(θ, φ)Dl
mm′(ωi) (3.56)

we obtain for the density distribution in the molecular frame

ρ(r′i) =
∑

λµ

ρλ(ri)D
λ
µ0(ωi)Yλµ(r̂

′
i) (3.57)

The Fourier transform of the density distributionρ̃(q) =
∫
drρ(r) exp(iq · r), occuring in

(3.52), can be calculated using the plane wave expansion

exp(iq · r) = 4π
∑

lm

iljl(qr)Y
∗
lm(Ωq)Ylm(r̂′) (3.58)
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which leads to the final expression

ρ̃(±q) = 4π
∑

λµ

(±i)λDλ
µ0(ωi)Yλµ(Ωq)ρ̃λ(q) (3.59)

where

ρ̃λ(q) = 4π

∫
drr2ρλ(r)jλ(qr) (3.60)

The Fourier transform of the nucleon-nucleon interaction reads

ṽ(q) =

∫
ds v(s) exp(iq · s) = 4π

∫
drs2j0(qs)v(s) (3.61)

The Fourier transform of the double-folding potential (3.52) reads

Ṽ (q) =
∑

λ1µ1

∑

λ2µ2

iλ1−λ2Dλ1
µ10(ω1)D

λ2
µ20(ω2)Yλ1µ1(Ωq)Yλ2µ2(Ωq)ρ̃λ1(q)ρ̃λ2(q)ṽ(q) (3.62)

which substituted in (3.51) leads to the following expression of the double-folding potential
(3.49) in multipolar form

V (R) =
1

(2π)3

∑

λiµi

iλ1−λ2−λ3λ̂1λ̂2λ̂
2
3



 λ1 λ2 λ3

0 0 0







 λ1 λ2 λ3

µ1 µ2 µ3





× Dλ1
µ10(ω1)D

λ2
µ20(ω2)D

λ3
µ30(Φ,Θ, 0)Fλ1λ2λ3(R) (3.63)

with the radial part given by the oscillating integral

Fλ1λ2λ3(R) =

∫
dq q2ρ̃λ1(q)ρ̃λ2(q)jλ3(qR)ṽ(q) (3.64)

AboveΦ,Θ are giving the orientation of the molecular system with respect to the molecular
axis. Then eq.(3.63) can be rewritten in the more condensed form in which the radial and
angular parts are factorizing

V (R) =
∑

λiµi

V µ1 µ2 µ3

λ1 λ2 λ3
(R)Dλ1

µ10(ω1)D
λ2
µ20(ω2)D

λ3
µ30(Φ,Θ, 0) (3.65)

The radial multipoles are writing

V µ1 µ2 µ3

λ1 λ2 λ3
(R) =

1

(2π)3
iλ1−λ2−λ3λ̂1λ̂2λ̂

2
3


 λ1 λ2 λ3

0 0 0




 λ1 λ2 λ3

µ1 µ2 µ3


Fλ1λ2λ3(R)

(3.66)
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If the fission(molecular)-axis is fixed in the laboratory frame, then one can choseΘ =
Φ = 0, andDλ3

µ30(Φ,Θ, 0) = δµ30 which leads to:

V (R) =
∑

λiµ

V µ −µ 0
λ1 λ2 λ3

(R)Dλ1
µ0(α1, β1, 0)Dλ2

−µ0(α2, β2, 0)

=
1

2

∑

λiµ

V µ −µ 0
λ1 λ2 λ3

(R)(1 + (−)λ1+λ2−λ3) cosµ(α2 − α1)d
λ1
µ0(β1)d

λ2
−µ0(β2)

+
1

2

∑

λiµ

V µ −µ 0
λ1 λ2 λ3

(R)(1 − (−)λ1+λ2−λ3) sinµ(α2 − α1)d
λ1
µ0(β1)d

λ2
−µ0(β2)

(3.67)

Due to the 3-j coefficient occuring in eq.(3.66) with all the angular momentum projections
equal to zero, the angular momenta must fulfillλ1 + λ2 − λ3 =even, otherwise the 3-j
equals zero. Thence, the last line in the eq.(3.67) cancels and the final expression of the
double-folding potential reads

V (R) =
∑

λiµ

V µ−µ 0
λ1 λ2 λ3

(R) cosµ(α2 − α1)d
λ1
µ0(β1)d

λ2
−µ0(β2) (3.68)

3.3.3 EffectiveN −N Interaction

The central part of the effectiveN −N potential interactionv may be written

v = v00(r12) + v01(r12)τ 1 · τ 2 + v10(r12)σ1 · σ2 + v11(r12)(τ 1 · τ 2) · (σ1 · σ2)

+ (vLS
0 + vLS

1 τ 1 · τ 2)L12 · (σ1 + σ2)

+ (vT
0 + vT

1 τ 1 · τ 2)S12 (3.69)

wheres, τ are the Pauli matrices for spin and isopsin respectively. The first row of the above
equations represents the central part of the effective potential. The second raw contains the
spin-orbit (LS) part where the relative angular momentum is

L12 =
1

2~
(r1 − r2) × (p1 − p2) (3.70)

and the third row the tensor term (T ) where the tensor operator is

S12 = 3(σ1 · r̂12)(σ2 · r̂12) − σ1 · σ2 (3.71)

In our next considerations we drop-out the non-central terms.
When either target or projectile has zero spin, the central termv11(r12)(τ 1 · τ 2) · (σ1 ·

σ2) with S = 1 do not contribute. Similarly it will not contribute whenT = 1 if either
nucleus has zero isospin (N = Z). Usually the spin terms are relativey unimportant in barrier
penetration phenomena. Only one or a few unpaired nucleons in each nucleus contribute to
theS = 1 potential whereas all nucleons contribute to theS = 0 potential. Also theT = 1
interactions tend to make a small contribution.
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For two spinless nuclei (S=0) the integrand of the double folding integral (3.49) may be
written

ρ1ρ2v00 + (ρn
1 − ρp

2)(ρ
n
1 − ρp

2)v01 (3.72)

whereρn(p)
i are the neutron(proton) distributuins in nucleusi. In all the calculations we

assume thatρn
i = (Ni/Ai)ρi andρp

i = (Zi/Ai)ρi and (3.72) rewrites

ρ1ρ2

[
v00 + v01

(N1 − Z1)

A1

(N2 − Z2)

A2

]
(3.73)

For realistic interactionsv01 andv00 are comparable (typicallyv01/v00 ≈ −0.5). For usual
light quasi-molecular systems such as12C-12C, 28Si-28Si, 56Ni-56Ni, the asymmetry(Ni −
Zi)/Ai is zero. It is obvious that this term is important only in caseof very neutron-rich
targets and projectiles. In the cold fission of252Cf the fragments are in average moderately
neutron rich. In the splitting252Cf →106 Mo+146Ba we have that(N1 − Z1)/A1 ≈0.21
and(N2 − Z2)/A2 ≈0.23 which gives a contribution of up to 2.5% in the double folding
integrand. Since such a contribution to the fission(fusion)can give a sensitive change in
the transmission probabilities this term is taken into account throughout our calculations.
Thus in this work only the isoscalar and isovector components have been retained. The
spin-dependent components have been neglected since for a lot of fragments involved in
the calculation the ground state spins are unknown. Moreover, the spin-spin component of
the heavy-ion potential is of the order1/A1A2 and can be safely neglected for heavy and
superheavy nuclei.

As discussed above the only effect of antsymmetrization under exchange of nucleons
between the two nuclei that is normally included in the folding model is the single-nucleon
knock-on exchange in which the two nucleons that are interacting via vpt are interchanged.
As concluded in [18] the knock-on exchange potential cn be estimated quite accurately by
adding a zero-range pseudo-potential to the interactionvpt

v′pt = vpt(1 − Ptp) → vpt + Ĵ(E)δ(rpt) (3.74)

By introducing the delta function, i.e. a zero-range force,the exchange term becomes local.
The strength depends weakly on the energyE.

Density-independent M3Y interaction

Among the effectiveN −N interactions introduced into the folding model, the Michigan-3
Yukawa (M3Y) parametrization is one of the most widely used.Details about the derivation
are given in [19]. This interaction is particularly simple to use in folding models since it is
parametrized as a sum of 3 Yukawa functions in each spin-isospin (S, T ) channel.

The explicit form of the central term appearing in (3.69) is given in the versions Reid and
Paris

v00(r) =

[
7999

e−4r

4r
− 2134

e−2.5r

2.5r

]
MeV, M3Y − Reid (3.75)

v00(r) =

[
11062

e−4r

4r
− 2538

e−2.5r

2.5r

]
MeV, M3Y − Paris (3.76)
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Both versions consists of a short-ranged repulsion and a long-ranged attraction, passing
through zero nearr ≈ 0.5 fm. In momentum space the the equationv00(q) = 0 has a
solution atq ≈ 2 fm−1.

The folding integral (3.49) satisfies some simple relationsif vpt does not depend upon
the densities. If the density distributions are spherically symmetric andvpt is scalar, then

J(V ) = J(v)J(ρ1)J(ρ2) = A1A2J(v) (3.77)

whereJ is the ”volume integral” of the functionf

J(f) = 4π

∫
f(r)r2dr (3.78)

Furthermore, the mean-square radii are introduced

〈r2〉V = 〈r2〉1 + 〈r2〉2 + 〈r2〉12 (3.79)

where

〈r2〉f =

∫
dr r4 f(r)∫
dr r2 f(r)

(3.80)

Then, the volume integrals of the interactions (3.76) and (3.76) areJ00(Reid)=-146
MeV fm3 and J00(Paris)=+131 MeV fm3. The mean-square radius for the Reid version
is 7.6 fm2, while for the Paris version it is 8.73 fm2

The M3Y interaction is dominated by the exchange component,therefore it is extermely
important to include this component in the barrier calculation in an accurate way. The one-
nucleon knock-on exchange term leads to a nonlocal kernel. The range of the nonlocality
behaves asµ−1 , whereµ = A1A2/(A1 +A2) is the reduced mass of the interacting system,
and therefore the nonlocal potential is reduced in the present case to a zero range pseudopo-
tential Ĵ00δ(s), with a strength depending slightly on the energy. The magnitude ofĴ00 has
been determined empirically [20] by comparing cross sections for proton scattering from
various targets, and at various energies up to 80 MeV, calculated using (3.74) with those in
which the exchange was calculated exactly. The results for boths versions(Reid and Paris)
can be expressed as

Ĵ00 ≈ −276 [1 − 0.005(E/A)] MeV (M3Y − Reid) (3.81)

Ĵ00 ≈ −590 [1 − 0.002(E/A)] MeV (M3Y − Paris) (3.82)

whereE/A is the bombarding energy per projectile nucleon in MeV. In cold process the
energy is not high and therefore we neglect the energy dependence. For example, the odd-
even staggering in theQ-value for a fragmentation channel, which is tipically of the order
∆Q=2 MeV, leads to a variation with∆Ĵ00=-0.005∆Q/µMeV·fm3 with µ ≈100. In treating
the exchange potential of theα-nucleus and light-ions scattering a finite-range was proposed
[21]

vex
00(r) =

[
4631

e−4r

4r
− 1787

e−2.5r

2.5r
− 7.847

e−0.7072r

0.7072r

]
MeV, M3Y − Reid (3.83)

vex
00(r) =

[
−1524

e−4r

4r
− 518.8

e−2.5r

2.5r
− 7.847

e−0.7072r

0.7072r

]
MeV, M3Y − Paris(3.84)
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An important difference between the Reid-based and Paris-based direct interactions is
that the later is repulsive. Its volume integral is comparable in magnitude to the Reid one,
but of opposite sign. On the other hand, the Paris exchange term is roughly twice as attractive
as the Reid one. This fact becomes transparent by inspectingthe pseudo-potential strengths
(3.81) and (3.82). However when direct and exchange potentials are combined, their sums
are very similar [22].

For the Reid version of the central isovector part the following form is used

v01(r) =

[
−4885.5

e−4r

4r
+ 1175.5

e−2.5r

2.5r

]
MeV (3.85)

and for the isovector component of the knock-on exchange term

Ĵ01 = 217 MeVfm3 (3.86)

Taking into account only the isoscalar and isovector components the effective density-
independentN −N interaction used in this work is

v(r12) = v00(r12) + Ĵ00δ(r12) + (v01(r12) + Ĵ01δ(r12))τ 1 · τ 2 (3.87)

It is important to remark that the M3Y forces are purely real,so that the imaginary part
of the optical potential either has to be constructed independently or treated phenomenolog-
ically.

A second remark is that they are independent of the density ofnuclear matter in which the
nucleons are embedded, and are also independent of energy except for the weak dependence
of the knock-on exchange.

Density-dependent M3Y interaction

The density dependence of the effectiveN − N interaction in a nucleus is required for
nuclear matter to saturate rather than to collapse. Folded potentials based upon density-
independent interactions like the M3Y are able to reproducethe data onα scattering at
forward angles or low energies. Thus, the potential experienced in peripheral collisions
is correctly reproduced. However, the rainbow-like features seen at high energies and larger
angles were not reproduced because these features are sensitive to the real potential at smaller
radii. This drawback steems from the fact that the folded potential is at least a factor of two
to deep. This is a clear indication that the effective interaction must depend upon the position
within the nucleus of the two interacting nucleons.

A density dependence is introduced in the M3Y(DDM3Y) interaction assuming that the
effective N-N interaction factorizes in a radial part independent of the energy and a factor
dependent on energy and density [11]

vDD(ρ, E, r) = f(ρ, E)v′(r) (3.88)

wherev′(r) is the original M3Y interaction(including the knock-on pseudo-potential). Al-
though this factorization is rather arbitrary form theoretical point of view, the approximation
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that the shape ofv(r) does not vary strongly with density at low bombarding energies is
reasonable. According to ref.[23] the density-dependent factor is taken in the form

f(ρ, E) = C(E)
[
1 + α(R)e−β(E)ρ

]
(3.89)

with
ρ = ρ1(r1) + ρ2(r2) (3.90)

The parametersC(E), α(E) andβ(E) are chosen at each energy so as to make the varia-
tion with density of the volume integral ofvDD match as well as possible the results of the
Bruckner-type calculations for a nucleon scattering from nuclear matter at various densities
ρ ranging from about 5% to 100% of normal nuclear matter and at nucleon energies from 10
to 140 MeV [24].

Then the isocalar part of the DDM3Y interaction is

vDDM3Y
00 (ρ, E, r; Reid) = f(ρ, E)

[
v00(r; Reid) + Ĵ00(E; Reid)δ(r)

]
(3.91)

A difficulty related to the density dependenty Ansatz (3.89)is the occurence of densities
roughly twice that of normal matter,ρ ≈ 2ρ0, when the two ions are overlapping. The main
problem is that different versions of the density dependence give, by design, the same satura-
tion properties but different curvatures of the binding energy curveB(ρ) near the saturation
point, i.e. they are associated with different values of thenuclear incompressibilty

K = 9ρ2d
2B(ρ)

dρ2
(3.92)

Although the DDM3Y interaction insures the saturation of the binding energy per nucleon,
B(ρ ≪ ρ0) at large overlap(about 16 MeV per nucleon), it provides a wrong minimum of
the normal density atρ0 ≈0.07 fm−3 instead ofρ0 ≈0.17 fm−3 as predicted by Hartree-
Fock approximation of the nuclear matter. Consequently theconventional DDM3Y does not
satisfy the criterion of saturation at the right density.

Consequently a more realistic power-law dependence onρ [25] was adopted

f(ρ) = C(1 − αρβ) (3.93)

which can change sign at largeρ. The powerβ is taken to be one-third of an integer, cor-
responding to the dependence upon an integer power of the Fermi momentum. Variousβ
were chosen (β=2

3
, 1, 2 and 3) in combination with M3Y-Reid or M3Y-Paris. However,

integer values ofβ allow for a simple separation of variables when these interactions are
used to compute double-folded potentials. Values forC andα were selected such as to sat-
isfy the saturation conditionsB0=16 MeV andρ0=0.17 fm−3. These new density dependent
interactions were named BDM3Y [22].

The folding model for the scattering of two nuclei takesρ to be the suerposition of the
target and projectile densities, such that the total density ρ approaches 2ρ0 when the nuclei
overlap strongly. This makes the potential at small radii sensitive to the kind of density de-
pendence assumed. The interaction in this region weakens asn (or β) increases, thereby
offering the opportunity to determine the appropriate values of these two parameters when-
ever the scattering is sensitive to the depth of the potential in the interior. It was thus possible
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Table 3.1: Parameters of the density dependencies favoured DDM3Y1 andBDM3Y1 (n=1) interac-
tions, and the corresponding nuclear matter compresibilitiesK[22]

Interaction C α β K (MeV)

BDM3Y1-Paris 1.2521 1.7452 fm2 1.0 270

BDM3Y1-Reid 1.2253 1.5124 fm2 1.0 232

DDM3Y1-Paris 0.2963 3.7321 3.7384 fm2 176

DDM3Y1-Reid 0.2845 3.6391 2.9605 fm2 171

to evaluate the incompressibilityK in α-particle-nucleus systems by Khoa etal.[22], the val-
ues summarized in Table I giving the most credible results. The parameters that describe the
corresponding density dependencies of these interactionsare summarized in Table 3.1. From
the inspection of the results listed in this table we see for example that for complete overlap,
the BDM3Y1(Paris) interaction is reduced in strength by a factor off(2ρ0)/f(ρ0) = 0.407.
This factor becomes 0.433 for the DDM3Y1 (Paris) interaction, which means that the heavy-
ion interaction is roughly halved by the density dependencewhen they completely overlap.

This table shows also that that the DDM3Y-typef(ρ) can be used to generate only lowK
values, which are corresponding to a nuclear equation of state (EOS) that is quite soft, while
the BDM3Y-typef(ρ) can be used to generateK values higher than 200 MeV. In the past it
was thought that a very soft EOS is sufficient to explain the prompt explosions in supernovas,
but more recent numerical studies indicate that this is not the case. The choice of 270 MeV as
provided by the BDM3Y still corresponds to a soft EOS but is insatisfactory agreement with
a recent determination ofK(=290± 50 MeV) based upon the production of hard photons in
heavy-ions collisions [26]. Microscopic calculations of the monopole resonances are also
providingK for nuclear matter from the energies of monopole vibrationsin finite nuclei. It
was concluded that a compression modulus in the range 210 to 220 MeV should be expected
in such studies [27].

In the present work we are interested not only in the interaction of a light ion, like the
α-particle with a heavy ion but also by the interaction between two heavy or even very heavy
nuclei for which the above approach to the density dependentdoes not necesarily applyad
literam . For this reason another approach is considered, although the nuclear compresibility
is also playing inside a principal role.

The above analysis leads to the conclusion that the heavy ionnuclear potential should
also contain a short-range repulsive coreVcor. This short-range repulsion is a manifesta-
tion of the Pauli principle, which prevents the overlappingof the wave functions of two
composite systems of fermions. The existence of the core follows also from other existing
microscopic calculations of effective local ion-ion potentials such as the resonanting group
method (RGM) [28] and the two-center shell model(TCSM) [29]. These approaches are
leading to quantitatively different estimates of the height, radius, and diffuseness of the core,
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this being due, on one side, to the theoretical approaches themselves, and on the other side,
to the uncertainty in the precise knowledge about the interaction of nucleons in the nuclear
medium or the properties of the nuclear matter. The actual form of the repulsive core and its
intensity depend strongly on the extent to which the real collisions of heavy ions are adia-
batic or sudden. A further uncertainty with regard to the core parameters is associated with
the influence of the individual characteristics of the considered nuclei, including the binding
energies, the shape, and the nucleon distribution.

Due to these conditions of strong uncertainty we use in this work an expeditive receipt
for determining the properties of the short-range repulsive core.

As we noticed earlier a region of overlapping with doubled nucleon density is formed
once the distance between the nuclei becomes less thanr = Rp + Rt, whereRp andRt are
the nuclear radii along the scattering (fission) axis. The adding of the densities increases
the energy of the nucleons in his region, and therefore increases the energy of the complete
system. In the case of the complete overlapping (forr ≤ Rp +Rt) the increase is

∆V = 2Ap [B(2ρ0) − B(ρ0)] (3.94)

In order to obtain the strength of the repulsive coreVcor we assume that∆V must be
identified with the value of the heavy-ion interaction potential at the coordinate origin

∆V = Vcor(0) + VN (0) (3.95)

where the Coulomb force is neglected. Then, in the low-energy limit we can write

2Ap [B(2ρ0) −B(ρ0)] = Vcor + VN (0) (3.96)

From the definition of the compresibility (3.92) and expanding the binding energy around
the equilibrium valueρ0

B(2ρ0) − B(ρ0) ≈
1

2
ρ2

0

d2B(ρ)

dρ2
(3.97)

we obtain the following rough estimate for the height of the repulsive core for total overlap,
i.e.R = 0

Vcor + VN(0) ≈ Ap
1

9
K (3.98)

Similar receipts to introduce a repulsive core can be found in the literature [30]. They are
based on the knowledge of the equation of state and on the requirement that for a total overlap
of two nuclei a double density of the nuclear matter is obtained. The compressibility for cold
nuclear matter as a function of the relative neutron excessδ = (ρn − ρp)/ρ was taken from
the Thomas-Fermi model [31].

It should be noted that raising the collision energy the effect of the Pauli principle will
be weakened.

The repulsive Migdal interaction

A double folding potential based on the effective Skyrme interaction is also choice for sim-
ulating a repulsive core in a two heavy-ion systems [32]. In this case the nuclear potential
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between two heavy ions contains an attractive part and a repulsive one. Neglecting the spin
dependence, it can be written as

VN(R) = C0

{
Fin − Fex

ρ00

(
(ρ2

1 ∗ ρ2)(R) + (ρ1 ∗ ρ2
2)(R)

)
+ Fex(ρ1 ∗ ρ2)(R)

}
(3.99)

where∗ denotes the convolution of two functionsf andg, i.e. (f ∗ g)(x) =
∫
f(x′)g(x −

x′)dx′ and

Fin,ex = fin,ex + f ′in,ex
N1 − Z1

A1

N2 − Z2

A2

(3.100)

The set of parametersC0 =300 MeV fm3, fin=0.09,fex=-2.59,f ′in=0.42, andf ′ex=0.54 are
taken from Ref. [33]. To solve this integral we consider the inverse Fourier transform

VN (R) =

∫
e−iq·RṼN (q)dq (3.101)

where the Fourier transform of the local Skyrme potentialṼN(q) can be casted in the form

ṼN(q) = C0

{
Fin − Fex

ρ00

(
ρ̃2

1(q)ρ̃2(−q) + ρ̃1(q)ρ̃2
2(−q)

)
+ Fexρ̃1(q)ρ̃2(q)

}
(3.102)

Here ρ̃(q) and ρ̃2(q) are Fourier transforms of the nucleon densitiesρ(r) and squared nu-
clear densitiesρ2(r). Expanding the nucleon densities for axial-symmetric distributions in
spherical harmonics we get

ρ(r) =
∑

λ

ρλ(r)Yλ0(θ, 0) (3.103)

Then

ρ̃(q) = 4π
∑

λ

iλYλ0(θq, 0)

∫ ∞

0

r2drρλ(r)jλ(qr) (3.104)

ρ̃2(q) =
√

4π
∑

λ

iλ

λ̂
Yλ0(θq, 0)

∑

λ′λ′′

λ̂′λ̂′′(Cλλ′λ′′

0 0 0 )2

×
∫ ∞

0

r2drρλ′(r)ρλ′′(r)jλ(qr) (3.105)

Fourier transform of the effective N −N interaction

The various components entering in the expression of the effectiveN − N interaction have
to be Fourier transformed in order to evaluate the oscillating integrals (3.64). When dealing
with the M3Y forces the radial dependence is of the Yukawa type exp(−νr)/r. Then the
Fourier transform reads

ṽY (q) =
4π

q2 + ν2
(3.106)

For the delta kernelδ(r) the transform is

ṽδ(q) = 1 (3.107)
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3.3.4 The double-folding of the Coulomb interaction

The proton-proton Coulomb interaction is given by the well known formula

vC(r) =
e2

r
(3.108)

wheree2 = 1.4399 MeV fm is the square of the unit charge. Then, neglecting the current
distribution in the interaction he have the following double folding integral for the Coulomb
potential

VC(R) =

∫
dr1

∫
dr2

ρ1(r1)ρ2(r2)

| R + r2 − r1 |
(3.109)

In the most simple case, when we assume that both nuclei are spherical and the densities
homogenousρi(R) = ρoiΘ(Ri −R) [35]

VC(R) =
Z1Z2e

2

R





1
2

R
R1

[
3 − 3

5

R2
2

R2
1
− R2

2

R2
1

]
, R ≤ R1 − R2{

1 − 3
16

(R1+R2−R)4

R2
1R2

2

×
[
1 − 2

15
(R1+R2−R)(5R1+5R2+R)

4R1R2

]}
, R1 − R2 < R ≤ R1 +R2

1, R > R1 +R2

(3.110)
In the case when both charge distribution are non-sphericalthe standard prescription is to
expand|R + r2 − r1| into powers of eitherr1 or r2 by means of the formula [17]

1

| R + r2 − r1 |
=
∑

λ1µ1

4π

2λ1 + 1

rλ1
1

| R + r2 |λ1+1
Yλ1µ1(ω1)Y

∗
λ1µ1

(Ω − ω2) (3.111)

where we have assumed thatr1 <| R − r2 |. A similar expansion can be made in powers of
r1 under the conditionr2 <| R + r1 |. From these two expansions we may conclude

1

| R + r2 − r1 |
=
∑

λ1λ2λ3
µ1µ2µ3

a(λ1, λ2, λ3, µ1, µ2, µ3)
rλ1
1 r

λ2
2

Rλ3+1
Yλ1µ1(ω1)Yλ2µ2(ω2)Yλ3µ3(Ω)

(3.112)
provided thatR > r1 + r2. The dependence of the coefficients on the indicesµ1, µ2 andµ3

can be determined from the condition that the expression is ascalar under rotations of the
coordinate system

a(λ1, λ2, λ3, µ1, µ2, µ3) =



 λ1 λ2 λ3

µ1 µ2 µ3



 c(λ1, λ2, λ3) (3.113)

When the nuclear densities are not overlapping the terms with λ3 = λ1 + λ2 are dominating.
Consequently

c(λ1, λ2) = (4π)3/2(−1)λ2

√
(2λ1 + 2λ2)!

(2λ1 + 1)!(2λ2 + 1)!
(3.114)
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Then

1

| R + r2 − r1 |
=

∑

λ1λ2
µ1µ2

c(λ1, λ2)


 λ1 λ2 λ1 + λ2

µ1 µ2 −µ1 − µ2


 rλ1

1 r
λ1
2

Rλ1+λ2+1

×Yλ1µ1(ω1)Yλ2µ2(ω2)Yλ1+λ2,−(µ1+µ2)(Ω) (3.115)

Introducing the electric multipole tensors defined with respect to the space-fixed system
(primed axes in Fig.3.4)

Qλµ =

∫
ρp(r)rλYλµ(r̂) (3.116)

whereρp is the charge density distribution, the following analytical formula is obtained for
the Coulomb interaction [36]

VC(R) = =
∑

λ1λ2
µ1µ2

c(λ1, λ2)


 λ1 λ2 λ1 + λ2

µ1 µ2 −µ1 − µ2


 1

Rλ1+λ2+1

×Q(1)
λ1µ1

Q
(2)
λ2µ2

Yλ1+λ2,−(µ1+µ2)(Ω) (3.117)

Transforming the electric multipole operators into the intrinsic coordinate(body-fixed) sys-
tem (analogous to (3.56))

Q
(i)
λµ =

∑

µ′

Dλ
µµ′(ωi)Q

′(i)
λµ′ (3.118)

we arrive at the form bellow provided we consider only quadrupole and hexadecupole defor-
mations [37]

VC(R, β1, β2) =
Z1Z2e

2

R2

+

√
4π

5

e

R3

[
Z1P2(cosβ2)Q

′(2)
20 + Z2P2(cosβ1)Q

′(1)
20

]

+

√
4π

3

e

R5

[
Z1P4(cosβ2)Q

′(2)
40 + Z2P4(cosβ1)Q

′(1)
40

]

+ 12π

√
14

5

1

R5
Q
′(1)
20 Q

′(2)
20

2∑

µ=−2


 2 2 4

µ −µ 0


 d2

µ0(β1)d
2
−µ0(β2)

(3.119)

If the fragments have ellipsodal shape and sharp surfaces, the diffuseness is accounted only
by the nuclear interaction as pointed out in [38], then the electric multipole moment of frag-
ment 1 reads

Q
′(1)
λ0 = ρ01

∫ 4π

0

dΩYλ10(Ω)

∫ R1(Ω)

0

drrλ1+2

= 4πρ01

√
2λ1 + 1

λ1 + 3

∫ +1

−1

dxPλ1(x) [R1(x)]
λ1+3 (3.120)
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where
R1(x) =

a1[
1 −

(
1 − a2

1

c21

)
x2
] (3.121)

is the equation in polar coordinates of the radius vector of spheroid 1. Using the following
integral formula for the Legendre functions [39]

∫ +1

−1

P2n(x)dx

(1 + kx2)n+3/2
=

2(−k)n

(2n+ 1)(1 + k)n+1/2
, (−1 < k < 1) (3.122)

we obtain forλ even

Q
′(1)
λ0 = 4π

√
2λ1 + 1

(λ1 + 1)(λ1 + 3)
3Z1(c

2
1 − a2

1)
λ1/2 (3.123)

Introducing the definitions

x2
1,2 =

c21,2 − a2
1,2

R2
(3.124)

the Coulomb interaction reads [40]

VC(R, β1, β2) =
Z1Z2e

2

R

∞∑

j=0

∞∑

k=0

3

(2j + 1)(2j + 3)

3

(2k + 1)(2k + 3)

(2j + 2k)!

(2j)!(2k)!

× x2j
1 x

2k
2 P2j(cosβ1)P2j(cosβ2) (3.125)

When the fragments symmetry axes are aligned, i.e.β1 = β2 = 0, Quentin showed that the
above double series is converging for|x1| + |x2| < 1 and the final result is given, according
to [41], in closed form :

VC =
3Z1Z2e

2

40R2

{
1

x2
1x

2
2

(1 + 11x2
1 + 11x2

2)

+ Px1Px2

[
(1 + x1 + x2)

3

x3
1x

3
2

ln(1 + x1 + x2)

(1 − 3x1 − 3x2 + 12x1x2 − 4x2
1 − 4x2

2)
]}

(3.126)

3.4 Proximity Potential Model

One of the most simple macrocopic interaction between two deformable bodies whose sur-
faces have small curvature and diffuseness was formulated in the seventees on the basis of
the ”proximity force theorem” [42]. Before that it was Bass [43] who derived a proximity
formul for two spherical nuclei. For that he considered two infinitely extended nuclear mater
distributions with flat surfaces with a distances between them. Then for the surface energy
per elementary surface the following Ansatz was choosed

dE

dS
= 2γ[1 − e(s)] (3.127)
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D(x)

x
s

R1
R2

Figure 3.5: Two nuclei are treated in the proximity approximation as endless extended nuclear matter
distributions. Due to the curved surface of realistic nuclei the distanceD between two opposing points
will increase withx. It is supposed that the radiiRi are large with respect to the minimal distances
the narower laying surface points.

where

γ = 0.9517

[
1 − 1.7826

(
N − Z

A

)2
]

MeV/fm

is the surface energy coefficient ande(s) is a function of the distances, which takes into
account the influence of the opposite matter distributions.Having these in mind the task is
to compute the surface energy for two spherical nuclei with radiiR1 andR2.

The first hypothesis made is that the two radii are large compared to the distances be-
tween the two surfaces. Then, the nuclear surfaces can be viewed approximately as endless
extended nuclear matter distributions, with difference that now the surfaces are no longer flat
but curved. The curvature determines that the distanceD between two opposite points on
the surfaces is no longer constant, but increase withx (see Fig.3.5).

Since the nuclei have spherical form, the dependence ofD can be easily derived. For a
sphere section we have the following relation

x2 = 2RH −H2 (3.128)

whereH is the thickness andx the halflength of the sphere’s section. In the present approxi-
mationH is large compared toR, and therefore the quadratic term in the above formula can
be neglected. We therefore obtain for the distanceD as a function ofx the following formula

D(x) = s+
x2

2R1

+
x2

2R2

(3.129)

Integrating (3.127) over the surface we obtain

Es = γ(S1 + S2) − 2γ

∫
dS e(D) (3.130)
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Figure 3.6: The minimal distance between the surfacess is the shortest distance between the nuclear
surfaces. The anglesΩM

i are describing the closest laying points. They must be determined separately
for each distance between the two centers, each deformationand each orientation.

The first term in the above formula represents the surface energy of both nuclei. The second
one can be rewritten as

γ

∫
dS e(D) = 2π

∫
xdx e(D) = π

∫
d(x2) e(D) (3.131)

From (3.129) it follows easily that

dD =
1

2

(
1

R1

+
1

R2

)
d(x2) (3.132)

and therefore

2γ

∫
dS e(D) = 4πγ

R1R2

R1 +R2

∫ ∞

s

dD e(D) (3.133)

This integral
∫∞

s
dD e(D) is the proximity function which is usually denoted byφ(x). The

factor R̄ = R1R2/(R1 +R2) is called the geometrical factor because it takes into acount
the nuclear form. The proximity formula was thus deduced fortwo spherical nuclei with
half-density radiiR1,2 and the account only of terms of the orders/R1,2.

The nuclear proximity potential is then defined as the difference between the total binding
energy of the nucleus-nucleus system and the binding energies of the separated nuclei at
infinity

V = −4πγR̄φ(s) (3.134)

Thus, the content of the proximity theorem is that the short-distance interaction energy can
be written as the product of a function depending only ons and a factor, which takes into
account the shape of the two nuclei [42].

The extension of theorem for a deformed target and sphericalprojectile was carried out
in [44] and for two deformed nuclei in [45].

We present in what follows the formalism for two deformed nuclei according to [45].
In order to incorporate the orientation in the potential, a series of steps are fulfilled

namely a) both nuclei are axial symmetric and thus the potential is independent of the Euler
angleγ and b) the intrinsic axesz′1,2(see Fig.3.4) are laying in the same plane and therefore
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also the dependence on the Euler angle is eliminated1. In this case the interaction poten-
tial depends only on three coordinatesV (R, β1, β2). The minimal surface distances is then
determined by the angleΩM

i (see Fig.3.6)

s = Min |R + R2(Ω2) − R1(Ω1)| =
∣∣R + R2(Ω

M
2 ) − R1(Ω

M
1 )
∣∣ (3.135)

This angle is in its turn determined by a numerical variational iterational procedure. The
iteration must be carried out separately for any given set ofcoordinates.

Contrary to the spherical case the overlapping deformed nuclear forms cannot have only
ones [46]. To overcome this problem the direction ofs is taken parallel to the two-center
distanceR. Here we deal with a conceptual problem. The interacting nuclear distributions
are so densly localized that they can be described only by onecoordinate. This is no longer
the case at high densities.

According to Ref.[42] the geometrical factor for two elliptic coaxial paraboloids with tip
distances, radii of curvaturePi andρi in the principal planes of curvature through the tip of
paraboloidi, and an azimuthal angleϕ between the principal planes of curvature

R̄ =

{
1

P1ρ1
+

1

P2ρ2
+

(
1

P1P2
+

1

ρ1ρ2

)
sinϕ2 +

(
1

P1ρ2
+

1

P2ρ1

)
cosϕ2

}
(3.136)

Due to the short-range of the nuclear potential only the dashed regions in Fig.3.6 are im-
portant and this is the justification for trading the deformed nuclei for two paraboloids. The
radii of curvature must be taken at the surface points specified by the anglesΩM

i and in the
direction of their tangential plane. Due to the requirementthat s is the minimum distance
between the nuclear surfacess/s and−s/s are the normal vectors of the tangential plane of
nuclei 1 and 2, respectively.

For axially symmetric nuclei the radius of curvatureP is along the unit vectoreθ and
reads

P (θM) =

[
R2(θM) +R′2(θM)

]3/2

R2 + 2R′2 − 2RR′′
(3.137)

whereR′ = ∂R/∂θ. The radius of curvature is alongeφ(see Fig.3.7). First we defineρ⊥ as
the radius of curvature with the principal plane parallel tothe intrinsicz-axis

ρ⊥ = R(θM) sin θM (3.138)

The theorem of Meusnier yields a connection between the radii of curvature through the
same point but in relation to different planes

ρ⊥ = ρ cos γ (3.139)

whereγ is the angle between the normal vector andρ⊥. The angleβ betweenR(θM) and the
normal vector is

tanβ = − 1

R

dR

dθ
= −R

′

R
(3.140)

1Note that this restriction has not been operated in the studyof the orientation dependence of the double-
folding potential
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Figure 3.7: The display of the geometrical quantities necessary in the calculation ofρ

Besides, we infer from Fig.3.7 that

γ =
π

2
− θM − β

The last four equations are finally providing

ρ(θM) =
R(θM) sin θM

cos
[

π
2
− θM − atan(R′

R
)
] (3.141)

This equation is undetermined at the tip of the nucleus(θM=0). However due to the axial
symmetry we have at this point

P (θM) = ρ(θM) (3.142)

As shown in ref.[47]R̄, which depends on the rate of curvatureκ of both interacting
nuclei, can be put in the form

R̄ =
1√

(κ
||
1 + κ

||
2)(κ

⊥
1 + κ⊥2 )

(3.143)

where

κ
‖
i =

R2
i +R3

i

(
∂2

∂φ2
1
Ri

)

[
R2

i +
(

∂Ri

∂φ

)2
]3/2

(3.144)

and

κ⊥i =
R2

i +R3
i

(
∂2

∂θ2
1
Ri

)

[
R2

i +
(

∂Ri

∂θ

)2]3/2
(3.145)

and the argument of the proximity function will also depend on orientation angles

s = r −R
(0)
1

(
1 +

∑

λµ

α
(1)
λµY

∗
λµ(θ, φ− φ1)

)
−R

(0)
2

(
1 +

∑

λµ

α
(2)
λµY

∗
λµ(π − θ, π + φ− φ2)

)

(3.146)
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Figure 3.8: Comparison o different proximity functions. The proximityfunction of Blocki et
al.(dashed line) increase when the nuclei are overlapping.

The next step consists in the determination of the proximityfunctionφ(s). Bass used as an
empirical law an exponential function [43],

φ(s) =
d

1[fm]
e−

s
d , (3.147)

whered=1.35 fm, which later [48], upon better agreement with fusion data was modified to

φ(s) = {4πγ(A exp(s/d1) +B exp(s/d2))}−1 (3.148)

whereA=0.0300 Mev−1fm, B =0.0061 Mev−1fm, andd1=3.30 fm andd1=0.65 fm, these
last two constants determining the range of the interaction.

Blocki et al.[42] used the Seyler-Blanchard effectiveN−N interaction and the Thomas-
Fermi model and integrated numerically over the surface using a Fermi-density profile

ρ(r) =
ρ0

1 + exp[(r − R(Ω))/0.872]

The result was

φ(s ≤ 1.2511fm) = −1

2
(s− s0)

2 − 0.0852(s− s0)
3

φ(s ≥ 1.2511fm) = −3.437 exp(−s/0.75fm) (3.149)

wheres0=2.54 fm In Fig.3.8 we compareφ(s) for the two Bass ansatz, (3.147,3.148) and the
Blocki one (3.149). It is noticeable the increase of the (3.149) ansatz for negatives, which
corresponds to a compression energy as discussed in the preceding section. The second
ansatz of Bass (3.148) has also this tendency but instead it is purely repulsive. The repul-
sive behaviour of the proximity function (3.149) is caused by the nucleon relative impulse
dependent term in the Seyler Blanchard interaction

v(r12, p12) = −328.61
e−r12/a

r12/a

(
1 − p12

b2

)
(3.150)

with a=0.62567 fm andb=392.48 MeV/c
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3.5 Self-consistent methods

3.5.1 The Hartree-Fock+BCS

The LDM, which is based on a semiclassical description of thenuclei, supplemented by the
shell-effect corrective energy, is only a poore substitutefor a self-consistent calculation [50].
One of the main advantages of the self-consistent HF+BCS calculation is that it provides
simultanously both the single-particle and semiclassicalproperties of nuclei. The general
properties of the Hartree-Fock method were reviewed in [51,52]. In what follows we will
sketch briefely the underlying ideas of this method.

According to the variational prnciple, the ground-state ofanA-body system is that com-
pletely antisymmetric stateΨ(1, . . . , A) which minimizes the expectation value of the cor-
responding Hamiltonian〈Ψ | H | Ψ〉 subject to the condition that〈Ψ | Ψ〉 = 1. This
can be included in the variational problem by introducing the Lagrange multiplierE, and
demanding a minimum of

〈Ψ | H | Ψ〉 −E(〈Ψ | Ψ〉 − 1) (3.151)

This implies
〈δΨ | H | Ψ〉 = 0, (3.152)

for all variations of| δΨ〉, together with

δE(〈Ψ | Ψ〉 − 1) = 0 (3.153)

for arbitrary variationsδE. Since| δΨ〉 is arbitrary, the variational principle leads to the
Schrödinger equation

(H −E) | Ψ〉 = 0 (3.154)

The variational method cocnsists in introducing a trial wave functionf(q1, q2, . . .) depending
on a certain number of parameters(q1, q2, . . .) ≡ q. These parameters are varied untill

〈Ψ | H | Ψ〉 − (〈Ψ | Ψ〉 − 1) = H(q) − E(N(q) − 1) (3.155)

reaches a minimum. Necessary conditions for a stationary value are

∂H
∂qi

−E
∂N

∂qi
= 0; N(q) = 1 (3.156)

The Hartree-Fock approximation is an application of the variational method, which utilizes
a large number of variational parameters. Hartree’s idea was to ascribe to each particle a
state, or single particle orbitalφi(ri), so that the total wave-functionΨ is a product of these
orbitals. Fock introduced antisymmetry by making a Slater determinant rather than a simple
product

Ψ(1, . . . , A) =
1√
A!

det[φi(rj)] =
1√
A!

∑

P

(−1)Pφ1(rj1) . . . φ1(rjA
) (3.157)
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Table 3.2: Parameters of the Skyrme interactions SII and to SVI

Interaction t0 t1 t2 t3 x0 W

(MeV·fm3) (MeV·fm5) (MeV·fm5) (MeV·fm6) (MeV·fm5)

SII -1169.9 586.6 -27.1 9331.1 0.34 105.0

SIII -1128.75 395.0 -95.0 14000.0 0.45 120.0

SIV -1205.6 765.0 35.0 5000.0 0.05 150.0

SV -1248.29 970.56 107.22 0.0 -0.17 150.0

SVI -1101.81 271.67 -138.33 17000.0 0.583 115.0

In the above formula the symbols(j1 . . . jA) are a permutationP of the labels 1,. . . , A and
(−1)P is the signature of the permutation. To ensure that the wave-function| Ψ〉 is normal-
ized, the orbitalsφi(r) form an orthonormal set.

Brink and and Vautherin were the first to carry out HF calculations reviving a very simple
form of effective interaction, originally suggested by Skyrme, which contains only a small
number of adjustable parameters [53]. It is of the formV2 + V3 where

V2 = t0(1 + x0Pσ)δ(r12) +
t1
2

(1 + x1Pσ)(k′δ(r12) + δ(r12)k
2)

+ t2(1 + x2Pσ)δ(r12)k
′ · δ(r12)k + iW (σ1 + σ2) · (k′ × δ(r12)k) (3.158)

wherePσ is the spin exchange operator,k is the operator(−i∇) acting to right andk′ to
left. V3 incorporates a suitable density dependence. Originally itwas taken to be a contact
three-body force

V3 = t3δ(r12)δ(r23) (3.159)

but subsequently it has been found preferable to consider ita density dependent two-body
force

V ′2 =
t3
6

(1 + x3Pσ)ρα
0 δ(r12) (3.160)

(for x3 = 1, α = 1, this force makes the same contribution to the Hartree-Fockenergy as
doesV3.

There are several sets of Skyrme force parameters which havebeen fitted to reproduce
nuclear properties over a wide region of the the Periodic Table. These have names S-I, S-II,
etc. and are listed in table 3.2 for 5 choices. In most cases the exchange parameters are
set to zero,x3 = 1 andα = 1. This leaves six real parameterst0, x0, t1, t2, t3 andW , the
strength of the spin-orbit interaction. A value ofW =120MeV·fm5 gives reasonable spin-
orbit splittings for the eigenvalues near magic nuclei. Thevarious Skyrme forces can be
characterized by the value oft3, the amount of density dependence.

The Skyrme forces not only reproduce a large amount of nuclear data from a small num-
ber of adjustable parameters and they are exceedingly easy to use. The zero range nature of
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the force ensures that the Hartree-Fock fields are local, andin fact are simple polynomials of
local densities.

In our study for the HF part of the interaction we choosed the Skyrme interaction SIII
[54], which succeded to reproduce satisfactory the single-particle spectra of even-even nu-
clei. The difference between the binding energy computed with SIII and the experimental
one appears to be, for a large number of nuclei,≈ 5 MeV [55]. It also produces a fairly well
N − Z dependence of the binding energy[56]. The present work considers nuclei that are
not in a closed shell configuration. Thus, the level occupations will have a large effect on the
solution of the HF equations.

Usually the HF method is extended to the Hartree-Fock Bogolyubov (HFB) formalism by
using a mixture of different configurations in place of a single Slater determinant. However,
when dealing with a Skyrme force which has been simplified such that the bulk properties
of the nucleus are reproduced, one would have to introduce additional parameters in order to
guarantee that sensible pairing matrix elements are obtained.

Following Vautherin [57] we assign to each orbitalφk an occupation numbernk = v2
k,

whereu2
k + v2

k = 1, uk̄ = uk andvk̄ = −vk. In terms of the densityρ(r) = 2
∑′

k nk|φk(r)|2
the HF+BCS total energy, that has to be minimized, reads

EHF+BCS = Tr

[
(T +

1

2
V)ρ

]
+ Ep (3.161)

where

〈T 〉 =
~

2

m

(
1 − 1

A

)∑

k

′
nk

∫
dr|φk(r)|2 (3.162)

is the expectation value of the kinetic energy,V = Tr(ρṽ) enters as the Hartree-Fock-like
potential,ṽ being the antisymmetrized effective two-body interaction. The primed sum

∑′
denotes a sum over all HF orbitals having projections of the total angular momentumj on
thez-axisΩk > 0. To the total energy we added the pairing energy

Ep = −G
4

{
∑

k

[
nk(1 − nk)

1
2

]}2

(3.163)

For BCS-like calculations, the matrix elements ofṽ between HF states is taken to be constant

G = −
∫
dr

∫
dr′φ∗k(r)φ∗k̄(r)ṽ(r, r′)φl(r)φl̄(r) (3.164)

Varying the normalized single-particle wave functionsφk and their amplitudesvk under the
additional constraintλτ

∑
k (δτk ,τnk −Nτ ) , (τ = p, n), which ensures that on the average

the system contains the correct number of neutronsN and protonsZ, we are lead to the
standard HF and BCS equations [57].

The occupationsnk are determined at each step of the HF iterative calculation using the
HF eigenvaluesεk, and they are employed at the next step to construct the HF field. The
pairing force constant is

Gτ =
G0τ

11 +Nτ
MeV (τ = p, n) (3.165)
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The constantG0τ was adjusted in such a way to obtain the experimental pairinggap

∆τ = G
∑

k

′
ukvk (3.166)

In the deformed HF calculations one have to optimize the basis which is choosen to corre-
spond to an axial symmetric deformed harmonic-oscillator with frequenciesω⊥ andωz. Such
a basis is characterized by the deformation parameterq = ω⊥/ωz and harmonic oscillator
lengthb =

√
mω0/~, with ω3

0 = ω2
⊥ωz. The basis is cut off afterNmax major shells, where

Nmax=10 or 12 for the nuclei emerging in the sf of252Cf [58].
The next step consists in mapping out the potential energy curves by constraining our

HF+BCS calculations in which a quadratic constraintC
2
(Q − Q0)

2 is added to the energy
functional (3.161) [59]. HereQ0 is a specified targed value of the mass quadrupole moment.
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[27] J.P.Blaizot, J.F.Berger, J.Dechargé and M.Girod, Nucl.Phys.A591, 435 (1995).

[28] K.Wildermuth and E.J.Kannelopoulos, Reports on Progress in Physics42, 1719 (1979).

[29] P.Holzer, U.Mosel and W.Greiner, Nucl.Phys.A138, 241 (1969).

[30] E.Uegaki and Y.Abe, Progr.Theor.Phys.,90 (1993) 615.

[31] W.D.Myers and W.J.Swiatecki, Phys.Rev.C57, 3020 (1998)
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