
Chapter 4

Collective Quantum Dynamics of Two
and Three Interacting Heavy-Ions

In the fusion of heavy-ions the nuclei can stick together fora time of10−19 or longer forming
thus quasi-molecular states. Since such times are comparable or even much longer than the
life time of collective states, it is then interesting to study the spectroscopy of such systems.

4.1 Geometrical Hamiltonian of Dinuclear Systems

4.1.1 Coordinate systems

For a dinuclear molecule we consider the following 7 degreesof freedom:ω̃i = (α̃i, β̃i, γ̃i),
(i = 1, 2) the Euler angles of each nucleus;R = (R,Θ,Φ) defining the relative vector as
displayed in Fig.3.4 for two deformed nuclei. The axisz′ is defined as the molecular axis
of the whole system. Then the intrinsic axes of each deformednucleus are referred to this
molecular system. The anglesΘ = θ2 andΦ = θ1 are giving the orientation of thez′-axis
and by the above definition also the orientation ofR for that system. Since the system of
principal axes of the nuclei does not necessarily coincide with the molecular one, a new
set of Euler angles,̃ωi = (αi, βi, γi), (i = 1, 2) , must be introduced in order to describe
the orientation of the interacting nuclei in the molecular frame by means of the following
transformation:

R(ωi) = R(Φ,Θ, 0)R(ω̃i) (4.1)

whereR denote Euler rotations. The variablesγi are set to zero because we suppose that no
quantum rotations around the symmetry axes of the nuclei areallowed. Further the variables
α1 andα2 are combined into the variablesθ3 = (α1 +α2)/2, which describes rotations of the
quasi-molecular system around the molecular axisz′, andα = (α1 − α2)/2 which describes
twisting of the two nuclei with respect to the same axis. Thenthe new set of 7 degrees of
freedom is

qi = (θ1, θ2, θ3, α, R, β1, β2) (4.2)

It is possible to define a different molecular frame, whose axes are the principal axes
of the total system. However such a system proves to be inconvenient in analyses of decay
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4.1 Geometrical Hamiltonian of Dinuclear Systems 115

properties. Itsz′-axis does not necessarily coincide with the direction of the relative vector
R and consequently a complicated transformation must be donebetween the Euler angles of
the total system and the angular variables of the vectorR.

4.1.2 The classical kinetic energy and its quantization

In the laboratory system the classical kinetic energy of thetwo center-of-masses motions and
the rotational motions are

Tcl =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 +

1

2
tω1J 1ω1 +

1

2
tω2J 2ω2 (4.3)

wherem1 andm2 are the masses of the two nuclei, andr1,2 denote the vector positions of
their c.m.. The vectorsω1,2 are the angular velocities of the rotational motions of the two
nuclei. The inertia tensorsJ 1 andJ 2 are defined in the coordinate frame of their principal
axes, i.e. they are diagonal.

In order to separate the c.m. motion, the c.m. position vector Rc.m. and the relative vector
between the two nuclear c.m.R are introduced:

Rc.m. =
m1r1 +m2r2

m1 +m2
(4.4)

R = r2 − r1 (4.5)

Then the c.m. energies of the two nuclei can be written as the c.m. energy of the total system
and the relative energy between the two nuclei

1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 =

1

2
MṘ

2

c.m. +
1

2
µṘ

2
(4.6)

whereM = m1 + m2 is the total mass andµ = m1m2/(m1 + m2) the relative mass. The
relative energy in its turn can be rewritten as the sum of a radial(translational) motion and a
relative(orbital) rotation. For that we writeR in terms of spherical components

Rm =

+1∑

m′=−1

D1
mm′

∗
(θj)R̄m′ (4.7)

The intrinsic components̄Rm′ are by definition

R̄0 = R, , R̄+1 = R̄−1 = 0 (4.8)

i.e. R lies along the molecularz′-axis. Then (4.7) reduces to

Rm = D1
m0
∗
(θj)R (4.9)

Calculating the time derivative ofR we get for the relative energy

1

2
µṘ

2
=

1

2
µṘ2 +

1

2
µR2(θ̇2

2 + θ̇2
1 sin θ2

2)

=
1

2
µṘ2 +

1

2
tω′J relω

′ (4.10)
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where

J rel =




µR2 0 0

0 µR2 0

0 0 0


 (4.11)

Thus, the total classical energy, ommiting the c.m. energy of the total system, is put in the
new form

Tcl =
1

2
µṘ2 +

1

2
tω′J relω

′ +
1

2
tω1J 1ω1 +

1

2
tω2J 2ω2 (4.12)

The angular velocities of the constituent nucleiωi are referred to the laboratory system. It
is neccesary to express them in the molecular coordinate system, i.e. in terms of the angular
velocity of the molecular frameω′ and those referred to the molecular frameω

′′

i . As shown
in [1] the angular velocitiesω′ are expressed in terms of the time-derivative of the Euler
angles as follows

ω′j =
3∑

l=1

Vjl(θ2, θ3)
dθl

dt
(4.13)

where the transformation matrixV is given by

Vjl(θ2, θ3) =




− sin θ2 cos θ3 sin θ3 0

sin θ2 sin θ3 cos θ3 0

cos θ2 0 1


 (4.14)

For the angular velocities of the constituent nuclei referred to the molecular frame, Uegaki
and Abe [2] obtained

ω
′′

j =

3∑

l=1

Vjl(ψ2, ψ3)
dψl

dt
(4.15)

whereψl with l = 1, 2, 3 denote the Euler anglesαi, βi andγi, respectively.
The relation between the three angular velocities is given by

ωi = R(αi, βi, γi)ω
′ + ω

′′

i (4.16)

whereR(αi, βi, γi) denotes the transformation matrix which connects the axes of the molec-
ular frame and the principal axes of each nucleus. Explicitely it is given by

R(αi, βi, γi) =



cosαi cosβi cos γi − sinαi sin γi sinαi cosβi cos γi + cosαi sin γi − sin βi cos γi

− cosαi cosβi sin γi − sinαi cos γi − sinαi cos βi sin γi + cosαi cos γi sin βi sin γi

cosαi cosβi sinαi sin βi cosβi




(4.17)
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Inserting (4.16) in (4.12), the kinetic energy is expressedas a sum of three parts:

Tcl = Trot + Tint + TC (4.18)

where

Trot =
1

2
tω′Isω

′ (4.19)

is the total rotational energy of the interacting nuclei as awhole. The inertia tensor is given
by

Is = J rel +
tR(α1, β1, γ1)J 1R(α1, β1, γ1) + tR(α2, β2, γ2)J 2R(α2, β2, γ2) (4.20)

Since we assume that the deformations of the constituent nuclei are axially symmetric, the
inertia tensorsJ1,2 are diagonal in the coordinate frames of the principal axes of the con-
stituent nuclei

J1 =




JA 0 0

0 JA 0

0 0 Ja


 , J2 =




JB 0 0

0 JB 0

0 0 Jb


 (4.21)

Substituting these last two expressions in (4.20), the components of the symmetric matrixIs

are obtained

I11 = µR2 + JA + JB + (Ja − JA) cos2 α1 sin2 β1 + (Jb − JB) cos2 α2 sin2 β2

I12 = (Ja − JA) sinα1 cosα1 sin2 β1 + (Jb − JB) sinα2 cosα2 sin2 β2

I13 = (Ja − JA) cosα1 sin β1 cosβ1 + (Jb − JB) cosα2 sin β2 cos β2

I22 = µR2 + JA + JB + (Ja − JA) sin2 α1 sin2 β1 + (Jb − JB) sin2 α2 sin2 β2

I23 = (Ja − JA) sinα1 sin β1 cosβ1 + (Jb − JB) sinα2 sin β2 cosβ2

I33 = JA + JB + (Ja − JA) cos2 β1 + (Jb − JB) cos2 β2 (4.22)

In case the nuclei have no non-axial deformations and since in quantum mechanics the ro-
tations around the symmetry axis are forbiddenIa = Ib = 0 and sinceα1 = −α2 = α, the
above expressions are rewritting:

I11 = µR2 + JA + JB − (JA sin2 β1 + JB sin2 β2) cos2 α

I12 = (−JA sin2 β1 + JB sin2 β2) sinα cosα

I13 = −(JA sin β1 cosβ1 + JB sin β2 cosβ2) cosα

I22 = µR2 + JA + JB − (JA sin2 β1 + JB sin2 β2) sin2 α

I23 = (−JA sin β1 cosβ1 + JB sin β2 cosβ2) sinα

I33 = JA sin2 β1 + JB sin2 β2 (4.23)

Now introducing (4.13) in (4.19) we obtain

Trot =
1

2

∑

1≤i,j≤3

grot
ij θ̇iθ̇j (4.24)
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where the elements of the symmetric tensorgrot are given in terms of the matrix elementsIij

grot
11 = I11 sin2 θ2 cos2 θ2 + I22 sin2 θ2 sin2 θ3 + I33 cos2 θ2

− 2I12 sin2 θ2 sin θ3 cos θ3 − 2I13 sin θ2 cos θ2 cos θ3 + 2I23 sin θ2 cos θ2 sin θ3

grot
12 = (I22 − I11) sin θ2 sin θ3 cos θ3 + I12 sin θ2(sin

2 θ3 − cos2 θ3)

+ I13 cos θ2 sin θ3 + I23 cos θ2 cos θ3

grot
13 = I33 cos θ2 − I13 sin θ2 cos θ3 + I23 sin θ2 sin θ3

grot
22 = I11 sin2 θ3 + I22 cos2 θ3 + 2I12 sin θ3 cos θ3

grot
23 = I13 sin θ3 + I23 cos θ3

grot
33 = I33 (4.25)

The second term in (4.18) is the intrinsic kinetic energyTint

Tint =
1

2
µṘ

2
+

1

2
tω′′1J 1ω

′′
1 +

1

2
tω′′2J 2ω

′′
2 (4.26)

By substituing the angular velocitiesω′′i , whose components are given in (4.15) we obtain

Tint =
1

2
µṘ2 +

1

2

[
JA(α̇2

1 sin2 β1 + β̇2
1) + Ja(α̇1 cosβ1 + γ̇2

1)
2
]

+
1

2

[
JB(α̇2

2 sin2 β2 + β̇2
2) + Jb(α̇2 cosβ2 + γ̇2

2)
2
]

=
1

2
µṘ2 +

1

2
(JA sin2 β1 + JB sin2 β2)α̇

2 +
1

2
(JAβ̇

2
1 + JBβ̇

2
2) (4.27)

Thus

Tint =
1

2

∑

1≤i,j≤4

gint
ij q̇iq̇j (4.28)

where the only non vanishing elements of the symmetric tensor gint for the internal variables
are given by

gint
11 = JA sin2 β1 + JB sin2 β2

gint
22 = µ

gint
33 = JA

gint
44 = JB (4.29)

The third term in (4.18) is the Coriolis coupling termTC

TC = tω′
(

tR(α1, β1, γ1)I1ω
′′
1 + tR(α2, β2, γ2)I2ω

′′
2

)
(4.30)

We obtain upon substitution

TC =
1

2

∑

1≤i≤3
1≤j≤4

gC
ij θ̇iq̇j (4.31)
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whereqj are the subset of four variables(α,R, β1β2). The non-zero elements of the metric
tensorgC

ij are given by

gC
11 = (JA sin β1 cosβ1 − JB sin β2 cosβ2) cosα sin θ2 cos θ3

− (JA sin β1 cosβ1 + JB sin β2 cosβ2) sinα sin θ2 sin θ3

+ (JA sin2 β1 − JB sin2 β2) cos θ2

gC
13 = JA(sinα sin θ2 cos θ3 + cosα sin θ2 sin θ3)

gC
14 = JB(− sinα sin θ2 cos θ3 + cosα sin θ2 sin θ3)

gC
21 = (−JA sin β1 cosβ1 + JB sin β2 cosβ2) cosα sin θ3

− (JA sin β1 cosβ1 + JB sin β2 cosβ2) sinα cos θ3

gC
23 = JA(− sinα sin θ3 + cosα cos θ3)

gC
24 = JB(sinα sin θ3 + cosα cos θ3)

gC
31 = JA sin2 β1 − JB sin2 β2 (4.32)

Next the classical kinetic energy must be quantized. In curvilinear coordinate the quan-
tized form reads [1]

T̂ = −~
2

2

∑

ij

1√
g

∂

∂qi

√
g(g−1)ij

∂

∂qj
(4.33)

The total 7×7 metricgij tensor can be arranged in term of the sub-matricesgrot, gint andgC

(g)ij =



 grot gC

gC gint



 (4.34)

whose determinat is given by

g = 4µ3R4J2
A sin2 β1J

2
B sin2 β2 (4.35)

The volume element is given by

dτ =
√
gdq1 ... dqn =

√
gdτ ′ (4.36)

Some times is more convenient to use as volume elementdτ ′ instead. The total volume
element can be factored in volume elements for rotational and vibrational variables

dτ = dΩ · dV (4.37)

where

dΩ = 2 sin θ2dθ1dθ2dθ3dα (4.38)

dV = DdRdβ1dβ2 (4.39)

with the weight functionD as

D = µ3/2R2JA sin β1JB sin β2 (4.40)
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We have to redefine the kinetic energyT̂ and the wave functionψ of the original Schrödinger
equation via

T̃ → T̂ ′ = g
1
2 Ĥg−

1
2

ψ → φ = g
1
2ψ (4.41)

so that
∫
ψ∗T̂ ψdτ =

∫
φ∗T̂ ′φdτ ′

holds. The potential commutes withg because it does not contain differential operators. The
kinetic energy simplifies to

T̂ =
̂̃
T + V̂add (4.42)

where

̂̃
T = −~

2

2

∑

µν

∂

∂qµ
(g−1)µν

∂

∂qν
(4.43)

V̂add = −~
2

8

∑

µν

{
3

4
(g−1)µν

1

g2

∂g

∂qν

∂g

∂qν
− 1

g

∂(g−1)µν

∂qµ

∂g

∂qν
− (g−1)µν

1

g

∂2g

∂qν∂qµ

}

(4.44)

The quantum mechanical kinetic energy is divided into threeterms, i.e. T̂rot, T̂vib and T̂C.
T̂rot is given by that part of the sum (4.33) withi, j = 1 3, i.e. it is given in terms of the
differential operators of the anglesθi. The quantum rotational energy in the three variables
θi was worked out in [1] and the result is

T̂rot =
~

2

2

∑

1≤i,j≤3

µijL̂
′
iL̂
′
j (4.45)

where the three components of the angular momentum operators are referred to the molecular
frame and are given by

L̂′1 = −i
(
−cos θ3

sin θ2

∂

∂θ1
+ sin θ3

∂

∂θ2
+ cot θ2 cos θ3

∂

∂θ3

)
(4.46)

L̂′2 = −i
(

sin θ3
sin θ2

∂

∂θ1
+ cos θ3

∂

∂θ2
− cot θ2 sin θ3

∂

∂θ3

)
(4.47)

L̂′3 = −i ∂
∂θ3

(4.48)

where theµij coefficients are given as

µ11 = µ22 =
1

µR2
, µ12 = 0 (4.49)
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µ13 =
1

2µR2
cosα(cotβ1 + cot β2) (4.50)

µ23 =
1

2µR2
cosα(cotβ1 − cotβ2) (4.51)

µ33 =
1

4

[(
1

JA
+

1

µR2

)
1

sin2 β1

+

(
1

JB
+

1

µR2

)
1

sin2 β2

]

+
1

2µR2
(cos 2α cotβ1 cot β2 − 1) (4.52)

Next, we add tôTrot the kinetic energy associated withα, i.e. add the terms withi = 4 and/or
j = 4. The elements ofg−1 with i = 1 − 4, j = 4 are given by

(g−1)1≤i≤3,j=4 =




(−µ14 cos θ3 + µ24 sin θ3/ sin θ2)

µ14 sin θ3 + µ24 cos θ3

(µ14 cos θ3 − µ24 cos θ2 sin θ3)/ sin θ2 + µ34




(g−1)44 = µ44 (4.53)

where the coefficients are given by

µ14 =
1

2µR2
cosα(cotβ1 − cotβ2) (4.54)

µ24 =
1

2µR2
sinα(cot β1 + cot β2) (4.55)

µ34 =
1

4

[(
1

JA

+
1

µR2

)
1

sin2 β1

−
(

1

JB

+
1

µR2

)
1

sin2 β2

]
(4.56)

µ44 =
1

4

[(
1

JA
+

1

µR2

)
1

sin2 β1

+

(
1

JB
+

1

µR2

)
1

sin2 β2

]

− 1

2µR2
(cos 2α cotβ1 cot β2 + 1) (4.57)

Substituing the matrix elements(g−1)1−4,j=4 into (4.33) we obtain the kinetic energy associ-
ated withα

T̂rot(α) = −~
2

2

{
∑

1≤k≤3

[
L̂′kµk4

(
−i ∂
∂α

)
+

(
−i ∂
∂α

)
µk4L̂

′
k

]
+

(
−i ∂
∂α

)
µ44

(
−i ∂
∂α

)}

(4.58)
and thus the neŵTrot, is expressed in the compact form

T̂ 4
rot =

~
2

2

∑

1≤i,j≤4

L̂′iµijL̂
′
j (4.59)
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whereL̂′4 is given by

L̂′4 ≡ L̂′α = −i ∂
∂α

(4.60)

T̂vib is given by that part of the sum (4.33) withi, j = 5 − 7, i.e. it is given in terms
of the differential operators of the internal variables(R, β1, β2). The strategy of calculating
T̂vib consists in removing the weight functionD from the vibrational volume elementdV
by multiplying the wave function by

√
D. Accordingly the vibrational kinetic energy is

transformed into

T̂vib = −~
2

2

∑

5≤i,j≤7

1√
D

∂

∂qi
D(g−1)ij

∂

∂qj

1√
D

=
̂̃
T vib + V̂add (4.61)

wherễT vib andV̂add denote the modified vibrational kinetic energy and ”additional potential”
originated fromD, and are given by

̂̃
T vib = −~

2

2

∑

5≤i,j≤7

∂

∂qi
(g−1)ij

∂

∂qj
, (4.62)

V̂add =
~

2

4D

∑

5≤i,j≤7

[
∂(g−1)ij

∂qi

∂D

∂qj
+ (g−1)ij

∂2D

∂qi∂qj
− (g−1)ij

1

2D

∂D

∂qi

∂D

∂qj

]
(4.63)

and the substition of the matrix elements(g)5≤i,j≤7 results in

̂̃
T vib = −~

2

2

[
1

µ

∂2

∂R2
+

(
1

JA
+

1

µR2

)
∂2

∂β2
1

+

(
1

JB
+

1

µR2

)
∂2

∂β2
2

+
2 cos 2α

µR2

∂2

∂β1∂β2

]
(4.64)

V̂add = −~
2

8

[(
1

JA
+

1

µR2

)(
1

sin2 β1

+ 1

)
+

(
1

JB
+

1

µR2

)(
1

sin2 β2

+ 1

)

− 2 cos 2α

µR2
cotβ1 cotβ2

]
(4.65)

The coupling term̂TC, given by the sum (4.31) is also transformed into a new onễ
TC due

to the change of the volume element as follows

T̂C = −~
2

2




∑

1 ≤ i ≤ 4

5 ≤ j ≤ 7

1√
D sin θ2

(
∂

∂qi
D sin θ2(g

−1)ij
∂

∂qj
+

∂

∂qj
D sin θ2(g

−1)ji
∂

∂qi

)
1√
D




(4.66)
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where the elementsg−1 are obtained as

(g−1)i=5,j=1−4 = 0

(g−1)61 = (− sinα cos θ3 − cosα sin θ3)/µR
2 sin θ2

(g−1)62 = (sinα sin θ3 − cosα cos θ3)/µR
2

(g−1)63 =

[
(sinα cos θ3 + cosα sin θ3) cot θ2 +

1

2
sin 2α cotβ2

]
/µR2

(g−1)64 = −1

2
sin 2α cotβ2/µR

2

(g−1)71 = (sinα cos θ3 − cosα sin θ3)/µR
2 sin θ2

(g−1)72 = (− sinα sin θ3 − cosα cos θ3)/µR
2

(g−1)73 =

[
(− sinα cos θ3 + cosα sin θ3) cot θ2 −

1

2
sin 2α cot β1

]
/µR2

(g−1)74 = −1

2
sin 2α cotβ1/µR

2 (4.67)

Substituting these matrix elements in (4.66) results in

T̂C = −~
2

2




∑

1 ≤ i ≤ 4

5 ≤ j ≤ 7

(g−1)ij
∂

∂θi

(
∂

∂qj
− 1

2D

∂D

∂qj

)
+
∑

j=6,7

∂

∂α
(g−1)4,j

(
∂

∂qj
− 1

2D

∂D

∂qj

)

+
∑

i = 6, 7

1 ≤ j ≤ 3

(
∂

∂qi
+

1

2D

∂D

∂qi

)
(g−1)ij

∂

∂θj
+
∑

j=6,7

(
∂

∂qi
+

1

2D

∂D

∂qi

)
(g−1)i,4

∂

∂α




=
~

2

µR2

[
i sinα

(
− ∂

∂β1
+

∂

∂β2

)
L̂′1 + i cosα

(
∂

∂β1
+

∂

∂β2

)
L̂′2

+
i

2
sin 2α

(
− cot β2

∂

∂β1

+ cot β1
∂

∂β2

)
L̂′3

+
i

4
sin 2α

(
cot β2

∂

∂β1
+ cot β1

∂

∂β2

)
L̂′4

+
i

4
L̂′4 sin 2α

(
cot β2

∂

∂β1
+ cot β1

∂

∂β2

)
− 1

2
cos 2α cot β1 cot β2

]
(4.68)

Adding to the above expression of the Coriolis kinetic energy theK-mixing terms from
T̂ 4

rot we obtain a new couplinĝT ′C which is divided into two terms, one which preserves the
K-quantum number and a second one which does not:

T̂ ′C = T̂C(K) + T̂C(K,K ′) (4.69)
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where

T̂C(K) =
~

2

4µR2

[
−(e2iα + e−2iα) cotβ1 cot β2

+ cot β2
∂

∂β1

(
−e2iα(L̂′3 − L̂′4 − 1) + (L̂′3 − L̂′4 − 1)e−2iα

)

+ cot β1
∂

∂β2

(
e2iα(L̂′3 + L̂′4 + 1) + (L̂′3 + L̂′4 + 1)e−2iα

)]

(4.70)

T̂C(K,K ′) =
~

2

4µR2

[
eiαL̂′−

(
(L̂′3 + L̂′4 + 1) cotβ1 − 2

∂

∂β1

)

+

(
(L̂′3 + L̂′4 + 1) cotβ1 + 2

∂

∂β1

)

)
L̂′+e

−iα

+ eiαL̂′+

(
(L̂′3 − L̂′4 − 1) cotβ2 + 2

∂

∂β2

)

+

(
(L̂′3 − L̂′4 − 1) cotβ2 − 2

∂

∂β2

)
L̂′−e

−iα

]
(4.71)

with L̂′± denotingL̂′1 ± iL̂′2

4.1.3 TheK-diagonal approximation.

The kinetical couplings obtained in 4.1.2 are quite complicate and even a coupled channel
numerical procedure is difficult to be implemented. The problem can be easier handled if we
start with that part of the Hamiltonian which conserves theK-quantum number, a case which
is appropriate for elongated systems, occuring in fission and fusion. In fact theK-mixing
terms inT̂ 4

rot with the coefficientsµ13, µ14, µ23 andµ24 are relatively small, because they
contain the factor1/µR2 which is much smaller thanJA(B) in the contact(scission) region.
It is then usefull to regroup the kinetic energy operator as follows,

T̂ = T̂ ′ + T̂ ′C (4.72)

T̂ ′ = T̂ 4
rot + T̂vib (4.73)

whereT̂ ′C was defined in (4.69). In what follows we neglect the effects due toT̂ ′C.
TheK-diagonal part of the rotational energy (4.59), can be splitted in a non-perturbed

part and a coupling term
T̂ 4

rot = T̂ 0
rot + δT̂rot (4.74)

where

T̂ 0
rot =

~
2

2µR2
(L̂2 − L̂′23 ) +

~
2

2µ33
L̂′23 +

~
2

2µ44
L̂′24 +

~
2

2µ34
(L̂′3L̂

′
4 + L̂′4L̂

′
3)

=
~

2

2µR2
(L̂2 − 3

2
L̂′23 − 1

2
L̂′24 ) (4.75)

+
~

2

8

[(
1

JA
+

1

µR2

)
1

sin2 β1

(L̂′3 + L̂′4)
2 +

(
1

JB
+

1

µR2

)
1

sin2 β2

(L̂′3 − L̂′4)
2

]
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and

δT̂rot =
~

2

4µR2
(L̂′3 − L̂′4) cos 2α cot β1 cotβ2(L̂

′
3 − L̂′4) (4.76)

The vibrational operator is splitted as follows

T̂ 0
vib = − ~

2

2

[
1

µ

∂2

∂R2
+

(
1

JA

+
1

µR2

)
∂2

∂β2
1

+

(
1

JB

+
1

µR2

)
∂2

∂β2
2

]

− ~
2

8

[(
1

JA
+

1

µR2

)(
1

sin2 β1

+ 1

)
+

(
1

JB
+

1

µR2

)(
1

sin2 β2

+ 1

)]

(4.77)

δT̂vib = − ~
2

2R2
(e2iα + e−2iα)

(
∂2

∂β1∂β2
− 1

4
cotβ1 cotβ2

)
(4.78)

The operator̂T ′ is preserving theK-quantum number and therefore the eigenstates are
of the rotation-vibration type [1]

φ = DI∗

MK(θi)e
iναχK(R, β1, β2) (4.79)

Once the rotational degrees of freedom are decoupled, we remain with the the internal vari-
ables (R, β1, β2) which couple with each other through the kinetic energy operator T̂ ′ and
the interaction potential. In this basis the zeroth-order rotational-vibrational kinetic energy
reads

T̂ 0(I,K, ν) = − ~
2

2µ

[
∂2

R2
− 1

R2

(
I(I + 1) − 3

2
K2 − 1

2
ν2

)]
− ~

2

8

(
1

JA

+
1

JB

+
2

µR2

)

−~
2

2

(
1

JA

+
1

µR2

)(
∂2

∂β2
1

− 1

4

(K + ν)2 − 1

sin2 β1

)

−~
2

2

(
1

JB
+

1

µR2

)(
∂2

∂β2
2

− 1

4

(K − ν)2 − 1

sin2 β2

)

(4.80)

whereas the perturbed part is given by

δT̂ (K) = − ~
2

2µR2

{
(e2iα + e−2iα)

(
∂2

∂β1∂β2
− 1

4
(K2 + 1) cotβ1 cot β2

)

+
1

4
L̂′4(e

2iα + e−2iα)L̂′4 cot β1 cot β2

}
(4.81)

4.1.4 The harmonic approximation

The complicate dynamics of the dinuclear system internal motions can be solved by looking
for the normal modes around the equilibrium. The precessional centrifugal terms entering
in T̂ 0(I,K, ν)(second and third rows of eq.(4.80), which are produced byK− andν− rota-
tional motion around the molecular axisz′ will be moved together with theβi kinetical terms
in separated HamiltonianŝHβi
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As will be proved in 6.1.4, the potentialV (R,α, β1, β2), written earlier in (3.68), can
be expanded in terms of small deviations of the anglesβi, from the equilibrium position
(β1, β2) = (0, 0):

V (R,α, β1, β2) = V (R) +
1

2
C1(R)β2

1 +
1

2
C2(R)β2

2 + C12(R)β1β2 cos 2α (4.82)

Thus the solution for eachβi-mode is obtained by considering the zeroth-order sub-
hamiltonians

Ĥ0
β1(2)

= − ~
2

2J̃A(B)

(
∂2

∂β1(2)2
− (K ± ν)2 − 1

4β2
1(2)

)
+

1

2
C1(2)β

2
1(2) (4.83)

where
1

J̃A(B)

=
1

JA(B)

+
1

µR2

andsin β2
i was approximated byβ2

i . The solution of the corresponding eigenvalue problem
reads [1]

Ĥ0
βi
ϕKνnβi

(βi) = EKνnβi
ϕKνnβi

(βi) (4.84)

reads

ϕK,ν βi
(ε) =

{
λ

lKν+ 3
2

i Γ(lKν + 3
2

+ nβi
)
} 1

2

(nβi
!)

1
2 Γ(lKν + 3

2
)

βlKν+1
i e−

1
2
λiβ

2
i

1F1(−nβi
, lKν +

3

2
;λiβ

2
i ) (4.85)

whereλ2
i = J̃iCi

~2 , lK,ν = 1
2
| K ± ν | −1

2
and 1F1(...) is the confluent hypergeometric

function. The eigenvalues is given by

EKνnβi
=

(
lKν +

3

2
+ 2nβi

)
~ωβi

, ~ωβi
=

√
Ci

J̃i

(4.86)

The perturbed part of theβi-mode is derived from (4.81)

δĤβ1β2 = − ~
2

2µR2

{
δν′ν+2

(
∂2

∂β1∂β2

+
1

4

1

β1β2

)
+ δν′ν−2

(
∂2

∂β1∂β2

− 3

4

1

β1β2

)}

+
1

2
C12(R)(δν′ν+2 + δν′ν2−2)β1β2 (4.87)

4.1.5 Bound motion in theR-degree of freedom

In this the radial part,V (R, 0, 0, 0), is expanded around the equilibrium positionRmin, local-
ized on the bottom of the quasi-molecular pocket

V (R) = V (Rmin) +
1

2

∂2V (R)

∂R

∣∣∣∣
R=Rmin

(R− Rmin)
2 + O((R −Rmin)

4) (4.88)
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Naturally that theR-dependent stiffness coefficientsC1, C2 andC12 must be also expanded
aroundRmin.

The centrifugal term in the radial part of the kinetic energy(4.80), is evaluated atRmin,
and thus the zeroth-orderR-mode sub-hamiltonian corresponds to a one dimensional har-
monic oscillator

Ĥ0
R = − ~

2

2µ

∂2

∂R2
+

1

2
kR(R−Rmin)

2 (4.89)

wherekR = ∂2V (R)/∂R|R=Rmin, the corresponding eigenvalues and eigenvectors being

EnR
= ~ωR

(
nR +

1

2

)
, ~ωβi

= ~

√
kR

µ
(4.90)

fnR
(R) =

√
1

2nRnR!
√
π

µω

~
e−

µω
2~

R2

HnR

(√
µω

~
R

)
(4.91)

The total unperturbed energy is

EI
KνnRnβ1

nβ2
= V (Rmin) + ~ωR

(
nR +

1

2

)

+
~

2

2

[
1

µR2

(
I(I + 1) − 1

2
(3K2 + ν2 + 1)

)
− 1

4

(
1

JA
+

1

JB

)]

+

( |K + ν|
2

+ 1 + 2nβ1

)
~ωβ1 +

( |K − ν|
2

+
3

2
+ 2nβ2

)
~ωβ2(4.92)

4.1.6 Quasi-bound motion in theR-degree of freedom

In this case only theβi degrees of freedom are treated as bound and ther frequenciesare
supposed to depend parametrically onR. The zeroth-order Hamiltonian of the quasi-bound
radial mode reads

Ĥ0
R = − ~

2

2µ

[
∂2

∂R2
− 1

R2

(
I(I + 1) − 3

2
K2 − 1

2
ν2 − 1

2

)]

+

( |K + ν|
2

+ 1 + 2nβ1

)
~ωβ1(R) +

( |K − ν|
2

+
3

2
+ 2nβ2

)
~ωβ2(R)

+V (R) − ~
2

8

(
1

JA
+

1

JB

)
(4.93)

Asymptotically he have

Ĥ0
R −→ − ~

2

2µ

[
∂2

∂R2
− 1

R2

(
I(I + 1) − 3

2
K2 − 1

2
ν2 − 1

2

)
− 2ηK

r
+

1

2
µ

(
1

JA
+

1

JB

)]

(4.94)
The corresponding regular Coulomb-like solution is of the form (see App.A.2):

Fℓ(η, kR) ∼ eikR(kR)ℓ+1
1F1(ℓ+ 1 − iη, 2ℓ+ 2, 2ikR) (4.95)
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where

k2 =
2µ

~2

[
E +

~
2

8

(
1

JA
+

1

JB

)]
(4.96)

andℓ, generally non-integer number, reads

ℓ =
1

2

(√
4I(I + 1) − 6K2 − 2ν2 − 1

)

4.1.7 Symmetries of the Dinuclear System wave function

Boson Symmetry

When the clusters constituting the dinuclear system are identical the wave function should
be invariant under their mutual exchange. Exchanging the c.m. positions of two constiuent
nuclei, means to reverse the direction of relative vectorR and thus, if the clusters are along
thez′-axis, to reverse the direction of this axis. Since the intrinsic configurations of two ar-
bitrary oriented objects remain unchanged after the exchane of two nuclei, the orientation of
thex′-axis of the molecular frame is kept unchanged. The axes of the transformed molecular
frame, i.e.(x′,−y′,−z′) are obtained by rotations with(π+ θ1, π−θ2, 0). The internal vari-
ables will be tranformed according to(α1, β1, α2, β2) → (2π−α2, π−β2, 2π−α1, π−β1).
Since we introduced earlier the definitionsα = (α1−α2)/2, θ3 = (α1 +α2)/2, the exchange
operatorP12 acts as:

P12 : (θ1, θ2, θ3, α, R, β1, β2) → (π + θ1, π − θ2,−θ3, α, R, β1, β2) (4.97)

Parity Transformation

The inversion(parity) operation reverses the intrinsic configurations of two deformed nuclei
as well as the direction of the relative vectorR, thex′-axis andz′-axis of the molecular
frame. Accordingly the axes of the new molecular frame,(−x′, y′,−z′) is obtained by the
rotations(π + θ1, π − θ2, π). On the intrinsic coordinates, the inversion operator actsas
(α1, β1, α2, β2) → (2π − α1, β1, 2π − α2, β2), whereβi remain unchanged because both the
molecularz′-axis and the principal axesz

′′
are simultaneously reversed. Consequently the

inversion operatorP acts as

P : (θ1, θ2, θ3, α, R, β1, β2) → (π + θ1, π − θ2, π − θ3,−α,R, β1, β2) (4.98)

It should be noted that the definitionθ3 = (α1 + α2)/2 gives a resultθ3 → 2π − θ3 with
2π − α1, whose angles are referred to the−x′-axis of the new molecular frame, whileπ of
π − θ3 in the above equation is referring to the oldx′-axis.

Symmetrized wave functions

Assuming axial symmetry for each deformed cluster, theγ angle will not be affected by any
symmery transformation. Also, the density profile of each cluster will be invariant under
space inversion due to the positive parity of the ground state. The basis wave functionφ0 =
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DI∗

MK(θi)e
iναχK(R, β1, β2) must be then invariant under action of the inversion operation

upon a constituent nucleus,

Ji : (αi, βi) −→ (αi + π, π − βi) (4.99)

Consequently the symmetrization of the wave function is carried out by acting on it with the
operator1 + J1 + J2 + J1J2:

φλ ≡ (1 + J1 + J2 + J1J2)φ
0 = DI∗

MK(θi)e
iναχ̃K(R, β1, β2) (4.100)

with

χ̃K(R, β1, β2) = χK(R, β1, β2) + eiKπχK(R, π − β1, π − β2)

+ ei π
2
(K+ν)χK(R, π − β1, β2) + ei π

2
(K−ν)χK(R, β1, π − β2)(4.101)

To the above wave function we apply the boson symmetrizationand parity transformation
and we use the properties of the Wigner functions, given in App. A.1

1

2
(1 + P12)

1

2
(1 + (−1)pP)φλ

= DI∗

MK(θi)[e
iναχ̃K(R, β1, β2) + (−1)p+Ke−iναχ̃K(R, π − β2, π − β1)] +

+ (−1)p+I−KDI∗

M−K

× [e−iναχ̃−K(R, β1, β2) + (−1)p+Keiναχ̃−K(R, π − β2, π − β1)] (4.102)

It should also be noted that due to the periodicity with respect to precessional motions of
the constituents nuclei(K ± ν)/2 = m, m being an integer. A remarkable relation is then
obtained:

χ̃K(R, π − β1, π − β2) = (−1)K χ̃K(R, β1, β2) (4.103)

and eq.(4.102) can be further simplified

1

2
(1 + P12)

1

2
(1 + (−1)pP)φλ

= DI∗

MK(θi)[e
iναχ̃K(R, β1, β2) + (−1)p+e−iναχ̃K(R, β2, β1)] +

+ (−1)p+I−KDI∗

M−K

× [e−iναχ̃−K(R, β1, β2) + (−1)peiναχ̃−K(R, β2, β1)] (4.104)

In particular forK = 0

φλ(K = 0,−ν) = (−1)p+Iφλ(K = 0, ν) (4.105)

due to the parity transformation. Thus,I = even corresponds to positive-parity states and
I = odd to the negative-parity states.
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Figure 4.1: Illustration of the main variables of a three cluster molecule. The light cluster is plotted
as spherical. In general it will be deformed as the heavy nuclei.

4.2 Geometrical Hamiltonian of Trinuclear Systems

4.2.1 Trinuclear Quasimolecules with Deformed Clusters

In [3] a phenomenological, geometrical model for the systemof three clusters, two heavy
ones and a light in the middle, was proposed. The model was restricted to butterfly and
belly-dancer modes only and the10Be cluster was assumed to be spherical. However, in
general the light cluster can be deformed and its effect mustbe studied. Also the inclusion
of β andγ vibrations must be considered. Because the light cluster in[3] was considered
to be spherical, the stiffness of the butterfly motion is mainly determined by the monopole
part of the Coulomb repulsion between the heavy fragments [4]. In the case when the light
fragment is deformed, this is no longer true and one has to determine explicitely the change
of the nuclear and Coulomb interaction between the light andheavy clusters as a function of
the inclination angle. In Ref. [4] the nuclear potential wastaken into account, including also
multipoles higher than the monopole and quadrupole ones.

The model proposed in Ref.[3] is an extension of Ref. [5] presented for two clusters. The
molecule exhibits butterfly and belly-dancer modes,β- andγ-vibrations of the two clusters.
This picture can be extended straightforwardly to three clusters using the formulas as given
in Ref. [5]. It is especially easy for the case when the two bigclusters (for example the96Sr
and146Ba) are connected via a smaller spherical nucleus (10Be). The situation is illustrated
in Fig. 4.1, where the main dynamical variables, with a spherical cluster in the middle, are
indicated.

In Fig.4.2 possible vibrational modes are indicated, when the light cluster is deformed.
The first case corresponds to the above mentioned butterfly mode, whereas the second one
is the antibutterfly mode. As will be seen bellow, for the butterfly motion the dominant
contribution comes from the movement of the center of massesand, contrary to the two
cluster case, deformations play a minor role, except in fixing the length of the axis in Fig.
4.1 and 4.2.

In order to keep the problem tractable, the main assumptionsare that the light cluster is
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Figure 4.2: In the upper half the butterfly mode is plotted. The lower halfpresents a more com-
plex case which corresponds to the anti butterfly mode in the two nuclear molecule for the limit of
vanishing mass of the light cluster.
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Figure 4.3: The potential of the light cluster 3 in the field of the two heavier fragments along the
molecularz axis, for three fixed tip distances :d= 2 (solid lines), 3 (dashed line), 4 (dotted line) FM.
The trinuclear molecule comprises96Sr+ 10Be+ 146Ba.

sandwiched in-between the heavy nuclei and the inclinationangles of the clusters are small
with respect to the molecular (fission)z-axis, connecting both heavy clusters. In such a linear
chain configuration the total potential of the lighter cluster has an absolute minimum on the
axis joining the three fragments. As can be seen in Fig.4.3, for a given distanced between
the tips of the two heavier fragments, there is a point on the fission axisz, where the forces
exerted by the heavy fragment 1 on the light cluster are canceled by the forces exerted by
the heavy fragment 2. This is the so-called electro-nuclearsaddle point [6]. Note that the
result of Fig.4.3 was obtained using a strong nuclear repulsive force, between the fragments
in order to avoid their mutual overlap.

The general formalism

The motion of the three clusters can be divided into the rotations of the individual clusters
plus the motion of their center of masses with respect to eachother. The part of the Hamil-
tonian which describes the individual rotations is given inthe previous section and can be
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also read off from Eqs. (49) and (50) of Ref. [5]. The part which changes originates from
the motion of the center of masses. Therefore, the discussion concentrates first on the mo-
tion of the three center of masses and is independent of considering either of the two modes
described in Fig. 4.2.

In order to separate the center-of-mass motion, the following coordinates are introduced

r = r2 − r1

ξ =
m1r1 +m2r2

m1 +m2
− r3 (4.106)

wheremk = Akm, Ak is the number of nucleons of cluster no.k andm the nucleon mass.
The first coordinate (r) describes the relative distance of the two heavy fragmentswhile the
second one (ξ) the distance of the third, lightest cluster to the center ofmass of the first two.
The kinetic energy, excluding the motion of the total centerof mass, acquires the form

T =
1

2
µ12ṙ

2 +
1

2
µ(12)3ξ̇

2
+

1

2
tω1J 1ω1 +

1

2
tω2J 2ω2 +

1

2
tω3J 3ω3 (4.107)

whereµ12 = m1m2

2(m1+m2)
andµ(12)3 = m3(m1+m2)

2(m1+m2+m3)
. The first term in (4.107) describes the

kinetic energy of the two heavy clusters with respect to eachother and the second term the
kinetic energy of the third cluster with respect to a mass(m1 + m2) at the center of mass
of the first two clusters. The mass factors describe the reduced mass for each case. The
term proportional toṙ2 has the same form as for the two cluster case and thus is already
included in the considerations of the previous section. Thelast three terms in eq.(4.107) are
describing the rotational motion of the three clusters withangular velocitiesω1,2,3, referred
to the laboratory frame. The inertia tensorsJ i are defined in the intrinsic frame such that
in the absence ofβ andγ vibrations the only non-vanishing components are the first two
diagonal terms,(J i)11 = (J i)22 ≡ Ji, the quantum rotation around the symmetry axis of
any of the two heavier fragments being discarded. Whenβ andγ vibrations are included
there will be a contribution to(J i)33 given by aγ dependence [1].

The second term in Eq. (4.107) needs more attention. In Fig. 4.4 the three center of
masses are plotted and the relevant coordinates are indicated. The projection of the vectorξ
onto the relative distance vector, denoted byξz, and its perpendicular component along the
x-axis (ξx) are given by

ξz =
A2

(A1 + A2)
r − r13 cos ε

ξx = r13 sin ε (4.108)

wherer13 is the distance between the cluster no. 1 and 3 andε is the angle between the
axis connecting cluster 1 and 3 to the vectorr. Note, that this angle is not necessarily
the same as the inclination angle of the intrinsicz-axis of cluster no. 1 to the vectorr.
Because the molecular plane is defined by the three center of masses of the clusters the
spherical componentsξ±1 are the same up to a sign. The change in sign in the definition of
the spherical components, due to convenience, compared to the usual definition [7] is shown
bellow. Theξ contribution of the kinetic energy is obtained by rotating into the molecular
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Figure 4.4: Main variables for the discussion of the motion of the clusters with respect to each other.
Only the centers of mass of the nuclei are plotted.
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Figure 4.5: In case the third cluster is deformed, the alignment of a heavy nucleus with the light one
is not perfect. The relations of the angles are illustrated in this figure.

system and then substituting the expressions for the spherical components of the vectorξ.
As spherical components we use the expression

ξ±1 = ± 1√
2
(ξx ± ξy)

ξ0 = ξz (4.109)

where the definition ofξ±1 differs from the usual one [7] for convenience. In the molecular
frame the vectorξ is defined to lie in the molecular plane given by the molecularz axis,
parallel to the vectorr. Therefore, theξy component vanishes and the relation of the cartesian
to the spherical components is such that theξ±1 components are in their absolute value
identical and are given by± 1√

2
ξx.

In Fig. 4.5 the relation of the angleϕ3 to ϕ1 andϕ2 can be read off with the supposition
that the three clusters are connected. Assuming small angles, the result is

ϕ3 ≈ sinϕ3 =
1

2R3
(R2 sinϕ2 − R1 sinϕ1) ≈

1

2R3
(R2ϕ2 − R1ϕ1) (4.110)
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In the above formula we suppose that the heavy cluster 2 has a larger shift on thex-direction
than the lighter one. In principle the two anglesϕ1 andϕ2 could be treated now as indepen-
dent withϕ3 constrained by Eq. (4.110). However, the problem would get too complicated,
implying coupling terms between theϕ1 andϕ2 motion. Supposing that the cluster in the
middle is small, the relation betweenϕ1 andϕ2 should not differ much from the case when
the small cluster is spherical [3]. We use, therefore, the same relationϕ2 ≈ (R1+R3)

(R2+R3)
ϕ1 as for

a spherical cluster and substitute it into Eq. (4.110) resulting in (ϕ1 ≈ ε)

ϕ3 ≈
1

2

R2 − R1

R2 +R3
ε . (4.111)

One possibility to relax this constraint is to expand the general motion around the point
where condition (4.111) holds and diagonalizes the Hamiltonian in this basis.

For the case of connected clusters the distance between center of masses of the third
cluster and nucleus no.1,R13, can be approximated by(R1 +R3) in the linear, unperturbed
configuration. In the perturbed case, when the molecule ceases to be linear,r13 is modified
by the amount

δr13 ≈ −1

8

R1R3

R1 +R3

(
R1 +R2 + 2R3

R2 +R3

)2

ε2 (4.112)

providedε is small, Similarly we get the variation ofr23

δr23 ≈ −1

8

R2R3

R2 +R3

(
R1 +R2 + 2R3

R2 +R3

)2

ε2 (4.113)

At equilibrium (ε=0), the distancer, between the center of masses of the two heavy
clusters is given byR0 ≡ R1 +R2 + 2R3. Whenε 6= 0, and taking into account terms up to
second order inε, r changes to

r ≈ (R1 + 2R3 +R2)

(
1 − 1

2

R1 +R3

R2 +R3
ε2

)
+ δr13 + δr23. (4.114)

Therefore, an increase inε, changesr, r13 andr23 with a correction in the moment of
inertia of the order ofε2 and higher. At their turn, the componentsξz andξx acquire the form

ξz ≈
[

A2

(A1 + A2)
(R1 + 2R3 +R2) − (R1 +R3)

]

+
A2

A1 + A2
δr12 − δr13 +

(R1 +R3)

2
ε2

= ξ0 + δξz

ξx ≈ (R1 +R3)ε+ δξx . (4.115)

whereδξz andδξx give the contributions due to changes in the relative distance of the clusters
1 to 3 and 2 to 3, i.e. they describe a mode of the stretching vibrations. Again, for simplicity
we assume that the relative vibrations are along the molecular z axis, i.e. δξx = 0. If
this assumption is not made, there will be contributions of the typeδξ̇xδξ̇z in the kinetic
energy. One has then to construct the basis first, where this coupling term is absent, and
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afterwards to diagonalize the complete Hamiltonian in thisbasis. Note that the model is quite
crude and other coupling terms, like rotation- vibration interactions, have been neglected.
Consequently, the spectrum obtained in the model will be a first approximation and the
assumptions made above are justified only in this context.

In order to keep the procedure manageable, we assume that theangleε is small, i.e. the
light, third cluster is not far away from the axis connectingthe two heavy clusters. Fur-
thermore, we assume that the first cluster, supposed to be thelightest one of the two heavy
clusters, touches the third one and the third cluster touches the second one. The situation is
illustrated in Fig. 4.5 with a certain exaggeration as concerned to the distance of the third
cluster to the axis (r) connecting the heavy clusters. These assumptions excludethe anti
butterfly mode for which the relation of the angles change. The procedure for that mode,
however, is completely analogous.

Neglecting tems of the orderO(ε3) in Eq.(4.115) we obtain

ξx = (R1 +R3)ε

ξz = ξ0 +
1

2

R1 +R3

R2 +R3

A1R2 − A2R1

A1 + A2
ε2 (4.116)

whereξ0 is the value of theξ-coordinate in the linear chain configuration

ξ0 =
A2(R2 +R3) − A1(R1 +R3)

A1 + A2
(4.117)

The time derivative ofξlab
m is determined using the procedure outlined in Ref. [1]. After

some algebra, which implies also the calculation of WignerD-functions time derivatives we
arrive at

(ξ̇lab · ξ̇lab) ≡
∑

m

(−1)mξlab
m ξlab
−m ≈ (R1 +R3)

2ε̇2 + ξ2
0(ω

′2
1 + ω′22 ) + (R1 +R3)

2ε2ω′ 23

+ 2ξ0(R1 +R3)(ε̇ω
′
2 − εω′1ω

′
2) . (4.118)

The radial modeξ along thez axis describes the motion of the two heavy clusters in a
common direction and of the light cluster in the opposite direction (see Ref. [3]). The other
radial mode comes from changes inr and describes a vibration of the two heavy clusters
with respect to each other while the small cluster does not move. These types of vibrations
will be included in the complete Hamiltonian. Inserting (4.115) into the kinetic energy for
theξ motion, usingδξx = 0, we obtain

Tξ =
1

2
µ(12)3

{
(R1 +R3)

2ε̇2 + ξ2
0(ω

′ 2
1 + ω′ 22 ) + (R1 +R3)

2ε2ω′ 23

+ 2ξ0(R1 +R3)(ε̇ω
′
2 − εω′1ω

′
2)} , (4.119)

with ω′k being the angular velocity around thek’th molecular axis (1 = x, 2 = y and3 = z)
andξ is a shorthand notation forδξz. From here on, when we refer to the total contribution,
including the rotational one, we continue to denote it byξ and the pure motion along thez
axis is denoted byξ.
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The kinetic energy of ther and ξ stretching vibrations along the molecularz axis is
described by

Tr =
1

2
µ12ṙ

2 +
1

2
µ(12)3ξ̇

2 , (4.120)

where the last term comes from Eq. (4.119). The coordinatesr and ξ are related to the
relative distancesr13 = z3 − z1 andr23 = z2 − z3 via

z2 − z3 =
m1

m1 +m2
r + ξ

z3 − z1 =
m2

m1 +m2
r − ξ . (4.121)

The corresponding potential is given by

Vr =
C13

2
(r3 − r1 − r13,0)

2 +
C23

2
(r2 − r3 − r23,0)

2 (4.122)

wherer13,0 andr23,0 are the equilibrium positionsr13,0 = (R1 + R3) andr23,0 = (R2 +R3)
respectively. Note that in our picture cluster no. 1 is to theleft and no. 2 to the right and that
the coordinates refer to the distance along the intermolecular axis.

Up to know we considered ther and theξ motion only. The contributions coming from
the deformation of the individual clusters can be read off from Ref. [5] and from there the
general kinetic energy can be constructed.

Bellow two different cases are considered. In the first one the contributions ofβ and
γ vibrations are excluded and in the second one they are included. In both cases the static
deformation in the ground state is assumed to be prolate. This restriction is governed by the
necessity to keep the problem solvable otherwise the complicated form of the Hamiltonian
would prevent an analytical solution. In case a triaxial nucleus is present the procedure
outlined is strictly speaking not valid, but an approximation of the triaxial nucleus by an
axial symmetric would do the job.

With the assumption made above, the total kinetic energy is given by

T =
1

2
Θ11(ω

′ 2
1 + ω′ 22 ) +

1

2
Θ33ω

′ 2
3 − Θ13εω

′
1ω
′
3 +

1

2
Θεε̇

2 + Θ2εε̇ω̇
′
2

+
1

2
µ12ṙ

2 +
1

2
µ(12)3ξ̇

2 (4.123)

with

Θ11 ≈ J1 + J2 + J3 + µ(12)3ξ
2
0 + µ12R

2
0

Θ33 ≈
(
J1 + J2

(R1 +R3)
2

(R2 +R3)2
+ J3

(R1 − R2)
2

4(R2 +R3)2
+ µ(12)3(R1 +R3)

2

)
ε2

Θ13 ≈ J1 + J2
(R1 +R3)

(R2 +R3)
+ J3

(R1 − R2)

2(R2 +R3)
+ µ(12)3ξ0(R1 +R3)

Θε =
1

ε2
Θ33

Θ2ε = Θ13 (4.124)



4.2 Geometrical Hamiltonian of Trinuclear Systems 137

For nearly symmetric heavy clusters, not too deformed and a small value of m3

m1+m2
the

coupling is small compared to the diagonal terms of the moment of inertia and thus can be
neglected, as for the other contributions. Also the deformation dependent part inΘ11 can
be neglected with respect to the last term, as was done also inRef. [5]. However, for very
asymmetric heavy clusters we cannot neglect any more the contribution of Θ2ε, except for
small m3

m1+m2
. In this case, one has to diagonalize this term in the basis with Θ2ε = 0, which

is in the same spirit as for the coupling terms in the radial vibrations. The basis will be
discussed further below.

For the potential we assume a quadratic behaviour inε, r andξ, i.e.

V =
Cε

2
ε2 +

Cr

2
r̄2 +

Cξ

2
(ξ − ξ0)

2 , (4.125)

wherer̄ = (r − r0) with r0 being the equilibrium position of the nuclear molecule. The
parametersCr andCξ are related toC13 andC23 via

Cr =
(m2

2C13 +m2
1C23)

(m1 +m2)2

Cξ = C13 + C23 . (4.126)

Other crossing terms of the typerξ, r andξ also appear, which vanish for a symmetric dinu-
clear sub-system, formed from clusters 1 and 2. We assume that in general the microscopic
interaction is such that also for non-symmetric clusters the coupling terms can be canceled
or made small, which is obviously a simplification.

In what follows, we quantize the Hamiltonian with the kinetic energy given in (4.123)
taking into account the contribution of the coupling of theε andω2 motion, whose origin
is the Coriolis force. The quantization procedure was already explained in 4.1. Then, the
Hamiltonian composed by the kinetic energy (4.123) and the potential (4.125) is quantized
in this manner, resulting for the kinetic energy in

T̂ ≈ ~
2(Î2 − Î ′23 )

2(Θ11 − Θ2
13

Θε
)

+
~

2Î ′23

2(Θε − Θ2
13

Θ11
)ε2

− ~
2

2(Θε − Θ2
13

Θ11
)

(
∂2

∂ε2
+

1

4ε2

)

− ~
2

2µ12

∂2

∂r̄2
− ~

2

2µ(12)3

∂2

∂ξ2
+

Θ13

(Θ11Θε − Θ2
13)

[
~

2

ε
Î ′1Î
′
3 − ~Î ′2

(
~

i

∂

∂ε

)]
(4.127)

In the following discussion we will skip the term in the parenthesis{...} which has to be

treated as a perturbative interaction and the corrections given by Θ2
13

ΘεΘ11
, which is small com-

pared to one for the molecular systems studied in the presentcase. In very assymmetric
systems, however, both terms have to be included and diagonalized in the basis which will
be constructed in what follows. The terms which do not contain a derivative come from the
additional potential of Eq. (4.63)

Neglecting the term with the parenthesis{...} in Eq. (4.127) and corrections of the order

of Θ2
13

Θ11
andΘ2

13

Θε
, the corresponding static Schrödinger equation can be solved with the ansatz

φ = DI∗

MK(ϑ)χK,nε(ε)gnr(r) (4.128)
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wereDI∗

MK(ϑ) is the WignerD-matrix,gnr(r) is the one dimensional harmonic oscillator for
the relative motion andχK,nε is the solution of the differential equation

[
− ~

2

2Θε

∂

∂ε2
+

1

Θε

(K2 − 1

4
)

~
2

2ε2
+
Cε

2
ε2

+

(
~

2

2Θ11

[I(I + 1) −K2] + ~ωr(nr +
1

2
) + ~ωξ(nξ +

1

2
) − E

)]
φ = 0 ,(4.129)

whereI is the total spin,K its projection to the molecularz axis,~ωr = ~

√
Cr

µ(12)
, ~ωξ =

~

√
Cξ

µ3(12)
andE the total energy of the stateφ.

This equation can be solved with the solution given by (see also Ref. [1])

χK,nε(ε) =

{
λlk+ 3

2 Γ(lK + 3
2

+ nε)
} 1

2

(nε!)
1
2 Γ(lK + 3

2
)

εlK+1e−
1
2
λε2

1F1(−nε, lK +
3

2
;λε2) , (4.130)

whereλ2 = ΘεCε

~2 , lK =| K | −1
2

and1F1(...) is the confluent hypergeometric function.
The total energy is given by

E =
~

2

2Θ11

[
I(I + 1) −K2

]
+ ~ωr(nr +

1

2
) + ~ωε(| K | +2nε +

3

2
) (4.131)

and~ωε = ~

√
Cε

Θε
.

When there are two identical clusters the wavefunction has still to be symmetrized with
respect the interchange of cluster no. 1 and 2. For the light cluster the variables transform in
the same way as indicated by the second cluster except for thechange of indices from2 to 3.
With respect to the variableε the transformation isε→ −ε.

The extension toβ andγ vibrations is straightforward. Including also the rotation around
the intrinsicz axis of axial symmetric nuclei, given byΦk (k = 1, 2, 3), leads to a very
complicated form. Additionally we have to assume that the clusters are prolately deformed.
Otherwise a complex coupling between the rotations around thex, y andz will appear. The
β andγ vibrational variables of thek’th cluster are defined by

β̄k = ak
0 − β0k

ηk = ak
2 , (4.132)

whereak
0 and ak

2 are the components of the quadrupole deformation variable of the k’th
cluster with respect to the principal axes. Using Eq. (50) ofthe second paper in Ref. [5] for
the moments of inertia plus the corrections discussed further up, the Hamiltonian acquires
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the form

T̂ =
~

2(Î2 − Î ′23 )

2(Θ11 − Θ2
13

Θε
)

+
~

2Î ′23

2(Θε − Θ2
13

Θ11
)ε2

− ~
2

2(Θε − Θ2
13

Θ11
)

(
∂2

∂ε2
− 1

4ε2

)

− ~I ′3
Θεε2

(
~

i

∂

∂Φ1
+

~

i

∂

∂Φ2
+

~

i

∂

∂Φ3

)

− ~
2

2Θεε2

(
∂2

∂Φ2
1

+
∂2

∂Φ2
2

+
∂2

∂Φ2
3

)

− ~
2

Θεε2

(
∂2

∂Φ1∂Φ2

+
∂2

∂Φ1∂Φ3

+
∂2

∂Φ2∂Φ3

)

− ~
2

2B1

∂2

∂2β̄2
1

− ~
2

2B2

∂2

∂2β̄2
2

− ~
2

2B3

∂2

∂2β̄2
3

− ~
2

16B1η
2
1

− ~
2

16B3η
2
3

− ~
2

16B3η
2
3

− ~
2

4B1

∂2

∂2η2
1

− ~
2

4B2

∂2

∂2η2
2

− ~
2

4B3

∂2

∂2η2
3

− ~
2

16B1η2
1

∂2

∂Φ2
1

− ~
2

16B2η2
2

∂2

∂Φ2
2

− ~
2

16B3η2
3

∂2

∂Φ2
3

− ~
2

2µ(12)

∂2

∂r̄2
− ~

2

2µ(12)3

∂2

∂ξ2
(4.133)

where the variables̄βk andηk (k = 1, 2, 3) describe theβ andγ degree of freedom as defined
in Ref. [1].

The complete potential is given by

V =
Cε

2
ε2 +

Cr

2
r̄2 +

Cξ

2
(ξ − ξ0)

2

+Cη1η
2
1 + Cη2η

2
2 + Cη3η

2
3

+
Cβ1

2
β̄2

1 +
Cβ2

2
β̄2

2 +
Cβ3

2
β̄2

3 (4.134)

and the determinantg is

g = 8323Θ2
11Θ

2
εB

3
1B

3
2B

3
3η

2
1η

2
2η

2
3ε

2 . (4.135)

whereΘ22 ≈ Θ11 was used. The factor23B2
1B

2
2B

2
3 = (2B1)(2B2)(2B3) B1B2B3 comes

from theβ andγ part of the metric tensorgµν .

Neglecting, as in the case withoutβ andγ vibrations,corrections of the order ofΘ
2
13

ΘεΘ11

the static Schrödinger equation can be solved with the ansatz

φ(ϑ1, ϑ2, ϑ3, ε, r̄, β̄1, β̄2, β̄3, η1, η2, η3) = ei(K1Φ1+K2Φ2+K3Φ3)DI∗

MK(ϑ)χK̃,nε(ε)gnr(r̄)

gnξ
(ξ)gnβ1

(β̄1)gnβ2
(β̄2)gnβ3

(β̄3)χK1,nη1
(η1)χK2,nη2

(η2)χK2,nη2
(η2) (4.136)

whereKk is the eigenvalue of the operator1
i

∂
∂Φk

andK̃ stands for| K −K1 −K2 −K3 |.
To obtain the final form of the wave function, we have to apply the transformations of the
coordinate symmetries for a molecule composed of prolate nuclei.
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The transformations of the molecular frame consists of the operatorsR̂1,m andR̂2
2,m, the

m refers to the molecular frame, and their action is given by

R̂1,m(x, y, z) = (x,−y,−z)
R̂2,m(x, y, z) = (−x,−y, z) .

(4.137)

These operators act on the Euler anglesϑk (k = 1, 2, 3), the other coordinatesχi, φi, Φi

(i = 1, 2, 3) and onr̄ and ξ. The result is given in Table 4.1. The anglesχi, φi andΦi

correspond to the Euler angles describing the rotation of the nucleus from the molecular
frame to the principal axis of thei-th cluster.

Because the three clusters are supposed to lie in a plane the anglesχi are put to zero.
Also a small butterfly angle is assumed and all anglesϕi are proportional to it. A coordinate
symmetry transformation consists of those actions where the angelsχi andϕi are changed at
most by a sign. Inspecting Table 4.1, the only combinations allowed areR̂1,mR̂1,pi

andR̂2pi

whose action is given in Table 4.2.
These operators have to be applied to the solution

φ(ϑ1, ϑ2, ϑ3, ε, r̄, β̄1, β̄2, β̄3, η1, η2, η3) = ei(K1Φ1+K2Φ2+K3Φ3)DI∗

MK(ϑ)χK̃,nε(ε)gnr(r̄)

×gnξ
(ξ)gnβ1

(β̄1)gnβ2
(β̄2)gnβ3

(β̄3)χK1,nη1
(η1)χK2,nη2

(η2)χK2,nη2
(η2) (4.138)

of the Schrödinger equation. The action ofR̂2,pi
(i = 1, 2, 3) on this state changesΦi to

Φi ± π
2

andηi to−ηi, i.e. it acts only oneiKiΦi andχKi,nηi
(ηi). The result is a phase(−1)Ki

implying only even values ofKi.
The action of the operator̂R1,m R̂1,pi

is more involved. The result is

φ(ϑ1, ϑ2ϑ3, ε, r̄, β̄1, β̄2, β̄3, η1, η2, η3) =

N
{
DI ∗

M K(ϑ)f(Φ1,Φ2,Φ3) + (−1)I−KDI ∗
M −K(ϑ)f(−Φ1,−Φ2,−Φ3)

}

×χK,nε(ε)gnr(r̄)gnξ
(ξ)gnβ1

(β̄1)gnβ2
(β̄2)gnβ3

(β̄3)χK1,nη1
(η1)χK2,nη2

(η2)χK2,nη2
(η2)

(4.139)

whereN is a normalization factor and

f(Φ1,Φ2,Φ3) = ei(K1Φ1+K2Φ2+K3Φ3) + e−i(K1Φ1+K2Φ2−K3Φ3)

ei(K1Φ1−K2Φ2−K3Φ3) + e−i(K1Φ1−K2Φ2+K3Φ3) . (4.140)

The quantum numbers acquire the possible values

Ki = 0, 2, 4, ...

K = 0, 1, 2, 3, 4, ...

L = K,K + 1, K + 2, ...

nr, nξ, nε, nβi
, nηi

= 0, 1, 2, 3, 4, ... . (4.141)
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variable R̂1,m R̂2
2,m R̂1,pi

R̂2,pi

ϑ1 ϑ1 + π ϑ1 ϑ1 ϑ1

ϑ2 π − ϑ2 ϑ2 ϑ2 ϑ2

ϑ3 −ϑ3 ϑ3 + π ϑ3 ϑ3

χi −χi χi + π χi χi

ϕi π − ϕi ϕi ϕi + π ϕi

Φi Φi + π Φi π − Φi Φi + π
2

ξi ξi ξi ξi ξi

ηi ηi ηi ηi −ηi

r̄ r̄ r̄ r̄ r̄

ξ ξ ξ ξ ξ

Table 4.1: The action of the basic coordinate symmetry operators on thecollective variables

variable ϑ1 ϑ2 ϑ3 χi ϕi Φi ξi ηi r̄ ξ

R̂1,mR̂1,pi
ϑ1 + π π − ϑ2 −ϑ3 −χi −ϕi −Φi ξi ηi r̄ ξ

R̂2,pi
ϑ1 ϑ2 ϑ3 χi ϕi Φi + π

2
ξi ηi r̄ ξ

Table 4.2: The action of the allowed combinations of symmetry operators which satisfy the condition
that after their applicationχi is still zero andϕi is maintained near zero.

The energy is

E =
~

2

2Θ11
[I(I + 1) −K2] + ~ωε(| K −K1 −K2 −K3 | +2nε + 1)

+~ωβ1(nβ1 +
1

2
) + ~ωβ2(nβ2 +

1

2
) + ~ωβ3(nβ3 +

1

2
)

+~ωη1(
1

2
| K1 | +2nη1 + 1) + ~ωη2(

1

2
| K2 | +2nη2 + 1)

+~ωη2(
1

2
| K3 | +2nη3 + 1) + ~ωr(nr +

1

2
) + ~ωξ(nξ +

1

2
) . (4.142)

The frequencies are

~ωε = ~

√
Cε

Θε
, ~ωηk

= ~

√
Cηk

Bk
, ~ωβk

= ~

√
Cβk

Bβk

~ωr = ~

√
Cr

µ(12)
, ~ωξ = ~

√
Cξ

µ(12)3
. (4.143)
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Before we apply the outlined procedure to the cases96Sr + 10Be + 146Be, 112Ru + 10Be
+ 130Ru and108Mo + 10Be+ 134Te, which are all non-symmetric systems, the derivation of
the potential parameters is outlined. The ones related to theβ andγ vibrations are obtained
through the spectrum of the individual clusters.

Derivation of relative potentials

We derive now the expressions for the stiffness coefficientsappearing in Eq.(4.125). For that
we need to calculate the interactions between the nuclei composing the trinuclear molecule.
Since the interaction potential between the clusters should depend not only on their recip-
rocal distances but also on orientations we choose again thedouble folding-model potential
written in (3.49).

The ground state one-body nuclear densities of the fragments are taken as Fermi distri-
butions in the intrinsic frame

ρ(r) = ρ0

[
1 + exp

1

a

(
r −R0

(
1 +

∑

λ

βλYλ0(θ, 0)

))]−1

. (4.144)

The constantρ0 is fixed by normalizing the proton and neutron density to theZ proton andN
neutron numbers, respectively. This condition ensures thevolume conservation. The radius
R0 and diffusivity parameters were taken from liquid drop model calculations [8] for the
heavy fragments, whereas for the light cluster we consider the prescriptionR0 = 1.04 ·A1/3

3

for the radius anda = 0.35 for the diffusivity. As static deformations,βλ, we considered
quadrupole, octupole and hexadecupole deformations.

In the region of nuclear-density overlap we introduce a phenomenological repulsive po-
tential which originates from the compression effects of the overlapping density as explained
in 3.3.3

Vrep(R) = Vp

∫
dr1

∫
dr2 ρ̃1(r1)ρ̃2(r2)δ(s) (4.145)

where the tildes on the densities signify a distribution of the same shape as (4.144) but
possessing an almost sharp surface. The strength of the compression termVp was determined
from the nuclear equation of state [1] by requiring for totaloverlap of two nuclei a double
normal density of nuclear matter. For a given dinuclear subsystem (Alight + Aheavy) we take
the value of the nuclear compression modulusK according to the receipt proposed in [9],
and computeVp from the equation giving the binding energy loss for total overlap [10], i.e.
R = 0:

VM3Y(0) + Vrep(0) ≈ 1

9
KAlight (4.146)

The double orientation of the double folded potential is computed by using (3.68).
In [4] it was assumed that when the nuclear molecule is bent the reciprocal distances be-

tween the heavy fragments and the light cluster are preserved, i.e. the trinuclear molecule is
allowed to perform only vibrations which result in the increase of the angle between the two
valence bonds. In this way possible bond stretching vibrations were excluded. To overcome
this restriction we take into account such a degree of freedom and byδr13(23) we denote the
change in the distance between clusters 1(2) and 3. The geometry of the system, presented



4.2 Geometrical Hamiltonian of Trinuclear Systems 143

in Fig.4.5 for a deformed light cluster, provides the valuesof these quantities as a function
of the deflection anglesϕ1,2,3 :

δr13 = −1

2

R1R3

(R1 +R3)
(ϕ1 + ϕ3)

2

δr23 = −1

2

R2R3

(R2 +R3)
(ϕ2 − ϕ3)

2 (4.147)

On the other hand, from the inspection of Fig.4.5, the interaction between the deformed light
cluster 3 and the heavier deformed nucleus 1, reads :

V (r13) =
∑

λ1,λ2,λ3

V µ −µ 0
λ1 λ2 λ3

(R1 +R3 + δr13)d
λ1
µ0(ϕ1 − ε)dλ2

−µ0(ε+ ϕ3) (4.148)

Since we made earlier the approximationϕ1 ≈ ε, the variation of the valence bond length
(4.147) reads

δr13 = −1

8

R1R3

R1 +R3

(
R1 +R2 + 2R3

R1 +R3

)2

ε2 (4.149)

Expanding the potential (4.148) with respect to the small angleε we have that

V (r13) = V (R1 +R3) +
1

2
C13

ε ε
2 (4.150)

where

C13
ε = −1

4

(
R0

R1 +R3

)2

×
∑

λi

(
R1R3

R2 +R3

∂V 0 0 0
λ1λ2λ3

(r13)

∂r13
− 1

2
λ2(λ2 + 1)V 0 0 0

λ1λ2λ3
(r13)

)

r13=R1+R3

(4.151)

Using similar arguments we get the expression for the stiffness of the butterfly mode, coming
from the interaction between clusters 2 and 3

C23
ε = −1

4

(
R0

R2 +R3

)2

×
∑

λi

(
R2R3

R2 +R3

∂V 0 0 0
λ1λ2λ3

(r23)

∂r23
− 1

2
λ2(λ2 + 1)V 0 0 0

λ1λ2λ3
(r23)

)

r23=R2+R3

(4.152)

The last contribution to the stiffness coefficient of the butterfly mode comes from the inter-
action of the heavier fragments 1 and 2. Using again the geometry of Fig.4.5 we write in
multipolar form the interaction between these nuclei

V (r) =
∑

λ1,λ2,λ3

V µ −µ 0
λ1 λ2 λ3

(R0 + δr)dλ1
µ0(ϕ1)d

λ2
−µ0(ϕ2) (4.153)

According to eqs.(4.112-4.114) the shift in the interfragment distance reads

δr = −1

2
R0
R1 +R3

R2 +R3
ε2 + δr13 + δr23 (4.154)
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Figure 4.6: The potential between the heavy fragment146Ba and10Be (solid line) and between96Sr
and10Be (dashed line).

Consequently expanding in Taylor series this potential too, we obtain the stiffness coefficient

Cε =
1

2

∑

λ1λ2λ3

(
λ1(λ1 + 1)

R1 − R2

R2 + R3
− λ2(λ2 + 1)

(R1 − R2)(R1 + R3)

(R2 + R3)2

− λ3(λ3 + 1)
R1 + R3

R2 + R3

)
V 0 0 0

λ1λ2λ3
(R0)

− R0

∑

λ1λ2λ3

(
R1 + R3

R2 + R3
+

R0R3(R1R3 + R2R3 + 2R1R2)

4(R1 + R3)(R2 + R3)3

)
∂V 0 0 0

λ1λ2λ3
(R0)

∂r
(4.155)

In order to obtain the stiffness coefficients of the bond streching vibrationsC13 andC23,
we expand the potentialsV (r13) andV (r23) , up to second power ofδr13 andδr23. Such
an expansion is possible in view of the relative minimum in the potential with respect to
the inter-cluster distance. As an example we give in Fig. 4.6the potential between the
heavy cluster1(2) and the light cluster 3. After some algebra we obtain for the dinuclear
subensemble (13)

V (r13) = V (R1 +R3) + A13δr13 +
1

2
C13δr

2
13 (4.156)

where

A13 =
∑

λ1,λ2,λ3

(
λ2(λ2 + 1)

2

R1R3

R1 +R3

V 0 0 0
λ1λ2λ3

(r13) +
∂V 0 0 0

λ1λ2λ3
(r13)

∂r13

)

r13=R1+R3

(4.157)



4.2 Geometrical Hamiltonian of Trinuclear Systems 145

C13 =
∑

λ1,λ2,λ3

(
λ2(λ2 + 1)(3λ2

2 + 3λ2 + 1)

24

(
R1 +R3

R1R3

)2

V 0 0 0
λ1λ2λ3

(r13)

+ λ2(λ2 + 1)
R1 +R3

R1R3

∂V 0 0 0
λ1λ2λ3

(r13)

∂r13
+
∂2V 0 0 0

λ1λ2λ3
(r13)

∂r2
13

)

r13=R1+R3

(4.158)

Since the linear term inδr13 has only the effect to shift the origin of the harmonic oscillator,
the stiffness coefficient of the bond-stretching vibrations is specified byC13. In the same
manner we derive the coefficientC23 and next using the relations from eq.(4.126) we derive
the stiffness coefficients of ther andξ-modes.

Applications to 10Be-like molecules

The model developed above is applied next to the systems96Sr + 10Be + 146Ba, 112Ru +
10Be+ 130Sn and108Mo + 10Be+ 134Te. For the computation of the numbers we usemc2 =
938 MeV for the nuclear mass,~c = 197.33 MeV fm2, 1.2A1/3 for the spherical equivalent
radius of a heavy cluster and1.3A1/3 for the light one. In order to obtain3~

2

Jk
we set it equal

to the energy of the2+
1 state of the individual clusters.

In case we consider a spherical nucleus, theE(2+
1 ) value is taken as the vibrational

energy. This has to be used with caution because for a rotor the 2+
1 state is a rotational

one. In a nuclear molecule the rotation of individual clusters is constrained due to the link
to other clusters. Its rotation is converted into the butterfly motion. This is not the case
for a vibrational state. We assume a deformed10Be where the deformation isnot taken
from Ref.[12] because the assumptions used there are no longer valid for light deformed
nuclei. We rather use theSU(3) model of the nucleus and deduced from there a deformation
of 0.175 (see Ref. [3]). It will be seen that the results do not sensitively depend on that.
Interpreting the2+

1 state at3.368 MeV in 10Be as rotational, it is absorbed into the butterfly
motion. Instead the first vibrational state is aγ-mode at5.958 MeV, indicating a very stiff
system. The fact that the3.368 MeV transition (minus the6 keV shift) is seen in experiment
speaks in favour of a vibrational10Be nucleus. We carried out computations in frame of
the Hartree-Fock method, with pairing correlations taken into account and using Skyrme III
forces. The result was that the deformation energy curve of10Be has a spherical minimium
and it is symmetric for small deformations. Nevertheless, we would like to see the effects of
a possibly deformed light cluster. All this has to be taken into account when it comes to the
interpretation of the theoretical results.

After having described the three systems mentioned above, the nuclear structure of the
participants of the system90Y + 10Be + 142Cs will be discussed shortly.90Y and 142Cs are
odd-even nuclei with an odd number of protons. Their treatment requires the inclusion of
the spins of the extra protons.

96Sr + 10Be + 146Be
The nuclear structure of this system was already discussed in Refs. [3, 4]. The new

contribution here is the inclusion of theβ andγ and the relative vibrational modes.
The Sr and the Ba nuclei are prolately deformed and the corresponding deformation

values are given in Table 4.3. The parameters of the Hamiltonian are deduced and listed in
Table 4.1. The spectrum can then be determined from the Eq. (4.142). The radii along the
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system 96Sr + 10Be +146Ba 112Ru +10Be + 130Sn 108Mo + 10Be + 134Te

β01 0.338 0.237 0.333

β02 0.199 0. 0.

β03 0.175 0.175 0.175

~2

2Θ11
8.6210−4 9.1010−4 9.2010−4

~ωr 4.270 3.911 3.850

~ωξ 19.417 19.035 18.511

~ωε 2.427 2.880 2.681

~ωβ1 1.229 - -

~ωβ2 1.053 1.220 1.280

~ωβ3 6.179 6.179 6.179

~ωη1 1.507 0.524 0.586

~ωη2 1.566 - -

~ωη3 5.958 5.958 5.958

R1 6.66 6.88 6.92

R2 7.11 6.08 6.14

R3 3.11 3.11 3.11

Table 4.3: Parameters of the three systems. In case thedeformationβk, for one particular nucleusk,
is zerothe~ωβk

has to be interpreted as the energy~ωk of the five dimensional harmonic oscillator.
For the case of an oscillator the corresponding~ωηk

is put to zero because it is not relevant. The
deformation parameters have no units. The one of the~ωk are in MeV. The units of the radii are
is in fm, where we used for the spherical equivalent radius the formular0A

1/3 with r0 = 1.2 for a
heavy andr0 = 1.3 for the light cluster. An ”-” indicates that either no information is available, very
insecure orβ0k is zero.

prolate symmetry axis are also listed in Table 4.3. For the Benucleus it was shown in Ref. [3]
that according to theSU(3) model it can be taken as triaxial and the deformation is0.175.
This consideration does exclude any mixing with otherSU(3) representations due to the
SU(3) mixing terms like pairing and spin-orbit interaction. There are many indications that
the10Be nucleus can be assumed to be spherical [3]. However, in order to see the influence
of a deformed light cluster we will assume a deformed10Be nucleus.

Using the parameters of this system listed in Table 4.3, the spectrum of the molecular
states is given by (units are in MeV)
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Figure 4.7: Spectrum of the system96Sr + 10Be + 146Ba. For detailed explanations, see the text.
Only band heads are shown. On top of each band head there is a rotational band with the characteris-
tics explained in the text. The butterfly mode is the1+ state to the right and the first relative vibration
is given by the1− state. The2+ states belong to theγ vibrational states with eitherK1 or K2 equal
to 2. The0+ band heads consist of the ground state,β andγ vibrational (withnηi

= 1) band heads
of the heavy clusters.

E = 0.000862[I(I + 1) −K2] + 2.406(| K −K1 −K2 −K3 | +2nε)

+1.229nβ1 + 1.053nβ2 + 6.179nβ3

+1.507(
1

2
| K1 | +2nη1) + 1.566(

1

2
| K2 | +2nη2) + 5.958(

1

2
| K3 | +2nη3)

+3.61nr + 17.59nξ , (4.159)

where we have skipped the zero point energy contribution, i.e. E gives the difference in
energy to the ground state. All deformation vibrational states are lying above 1 MeV. The
same holds for the butterfly frequency. In conclusion, below1 MeV only the rotational states
belonging to the ground state band appear. The relativeξ motion is at such a large energy
that it does not play any practical role. Interesting to noteis that in the calculation of2Θ11

~2 the
dominant contribution comes from the last term ofΘ11 as given in Eq. (4.124). The other
terms contribute at most three percent. Even the rotationalcontribution from the light Be
cluster, given by the term before the last one ofΘ11, can be neglected due to a smallξ0. This
is similar to the two cluster case where the corresponding term is dominating all others.

In Fig.4.7 the expected structure of the spectrum is plotted. Only band heads contained in
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Eq.(4.159) are shown and not those belonging to other degrees of freedom, like the rotational
octupole band head state1− in 146Ba and the extra 0+ state at 1.465 MeV in96Sr. As can
be seen in Fig. 4.7 , there are no excited band head states below 1 MeV suggesting a stable
behavior against the butterfly motion. Nearly all states below 1 MeV are rotational one
belonging to the ground state band. Note that in Ref. [3] The~ωε was estimated assuming a
spherical10Be nucleus. 4.3).

The energy values of the first2+
1 and4+

1 states are 5.2 keV and 17 keV respectively. The
deformation of10Be results in an increase of the separation of the heavy clusters which raises
the moment of inertia. The expected lowering in the energiesof the rotational states is small
compared to the results of Ref. [3], which are 6 keV and 20 keV for the2+

1 and4+
1 states,

indicating a small influence of the supposed deformation of the10Be nucleus.
112Ru+ 10Be+ 130Sn
This system is the most symmetric one we could get for which experimental information

about the structure of the individual clusters are available and not just the ground state only.
This is important for deducing the deformation of the nuclei. This system has not been seen
yet but should exist.

The heavy fragments are again even-even nuclei. Using the tables of Ref. [12] the
corrected quadrupole deformation of112Ru is given by0.237 corresponding to a largeβ2.
For 130Sn no information in these tables are available. However, The Sn isotopes are known
to be an excellent example for the seniority scheme [14]. Theproton shell is closed and the
neutron shell is open. Because the seniority scheme is realized a zero deformation can be
assumed. This is also confirmed by the(E(4+

1 )/E(2+
1 )) ratio [15] which is1.63 for 130Sn.

For 112Ru the ratio is2.72 indicating a rotational structure.
The parameters of the nuclei and the system are listed in Table 4.3, including the radii of

the clusters along the line of contacts. The excitation energy is given by (units are in MeV)

E = 0.00094[I(I + 1) −K2] + 2.215(| K −K1 −K2 −K3 | +2nε)

+0.524(
1

2
| K1 | +2nη1) + 5.958(

1

2
| K3 | +2nη3)

+3.911nr + 19.035nξ

+1.220NSn , (4.160)

where the last term describes the five-dimensional harmonicoscillator for the Sn nucleus.
The spectrum is presented in Fig. 4.8, with the same characteristics as in96Sr + 10Be +
146Ba. Not plotted are the band heads belonging to different degrees of freedom than those
described by the model. Also suppressed are the states of thefive dimensional harmonic
oscillator of130Sn with ~ωβ = 1.220 MeV. There is aγ vibrational state at approximately
half a MeV though. One should observe above this band head a rotational structure similar
to the ground state band with the difference that also a3+ state exists at about 5.5 keV and a
4+ state at 12.7 keV above the2+ band head state. Theξ relative vibrational term can also
be neglected. In this system the rotational part is dominated to almost100% by the last term
of Θ11 of Eq. (4.124). The influence of the assumed deformation of10Be is again small.

108Mo + 10Be+ 134Te
The heavy fragments are even-even nuclei. Using the tables of Ref. [12] the deformation
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Figure 4.8: Spectrum of the system112Ru + 10Be + 130Sn. On top of each band head there is a
rotational band with the characteristics explained in the text. The butterfly mode is the1+ state to the
right and the first relative vibration is given by the1− state. The2+ state belongs to theγ vibrational
state of the first cluster withK1 = 2. The 0+ band heads consist of the ground state and theγ
vibrational (withnηi

= 1, ..., 4) band heads of112Ru. Noβ vibrational states could be identified in
the three clusters at energies below 5 MeV.

of 108Mo is given by0.354 which we corrected to0.333 using the additional deformation de-
pendent terms in theB(E2; 0+

1 → 2+
1 ) as given in Ref. [1]. The experimental information of

the spectrum is taken from Ref. [13]. For134Te no information in these tables are available,
however, the tendency observed coming from the lighter isotopes indicates a smallβ. When
we look at the ratio(E(4+

1 )/E(2+
1 )) we obtain 2.92 and 1.23 for108Mo and134Te respec-

tively. This experimental observation supports a deformednucleus for108Mo and possibly a
spherical deformation for134Te.

The108Mo nucleus is particularly difficult to treat. Within the geometrical model [1] the
Potential-Energy-Surface (PES) of the neigbouring nucleus 108Ru has a spherical absolute
minimum and a triaxial local minimum at large deformation [16]. The energy of the ground
state, however, lies above the saddle point and the ground state is a strong mixture between
both deformations. A largeβ in average is also indicated by the results ofββ decay for
108Mo where with great success a model for strongly deformed nuclei was applied [17].

Under the assumption that the Mo isotope is deformed while the Te nucleus is a vibrator
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Figure 4.9: Spectrum of the system108Mo + 10Be + 134Te. On top of each band head there is a
rotational band with the characteristics explained in the text. The butterfly mode is the1+ state to the
right and the first relative vibration is given by the1− state. The2+ state belongs to theγ vibrational
state of the first cluster withK1 = 2. The 0+ band heads consist of the ground state and theγ
vibrational (withnηi

= 1, ..., 3) band heads of108Mo. No β vibrational states could be identified in
the three clusters at energies below 5 MeV.

and using the parameters listed in Table 4.3, the excitationenergy is given by

E = 0.00092[I(I + 1) −K2] + 2.127(| K −K1 −K2 −K3 | +2nε)

+0.586(
1

2
| K1 | +2nη1) + 5.958(

1

2
| K3 | +2nη3)

+3.54nr + 17.30nξ

+1.280NTe , (4.161)

where the last term describes the five-dimensional harmonicoscillator for the Te nucleus.
The spectrum is presented in Fig.4.9, again with the same characteristics as in96Sr+ 10Be+
146Ba. Not plotted are the band heads belonging to degrees of freedom different from those of
the model. Also excluded are the states of the five dimensional harmonic oscillator of134Te
with ~ωTe = 1.280 MeV. There is aγ vibrational state at approximately half a MeV though.
One should observe above this band head a rotational structure similar to the ground state
band with the difference that also a3+ state exists at about5.5 keV and a4+ state at12.8
keV above the2+ band head state. Theξ relative vibrational term can also be neglected.
In this system the rotational part is dominated to almost100% by the last term ofΘ11 of
Eq. (4.124). Again the interpretation with respect to the influence of the10Be deformations
similar as in the two former cases.
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Structure of the participants in90Y+ 10Be+ 142Cs
This is the third system possibly identified in the experiment of Ref. [11]. The heavy

clusters are odd-odd nuclei. The influence of the extra odd protons should be included in
our consideration. The way to do it for individual nuclei is given in Ref. [1]. Such nuclei
can be described by an even-even core and an odd proton aroundit. The deformation can
be deduced via the one of neighboring nuclei. Take90

38Sr52, 90
40Zr50 as neighboring nuclei and

also88
38Sr50 as the core. The deformation of these nuclei are listed in Ref. [12], except for

90
38Sr52. The deformation are0.09 and0.12 for the last two nuclei respectively. However,
one must take some care in using these tables. The formula used to deduce the deformation
from the experimentalB(E2, 0+

1 → 2+
1 ) transition is theoretically biased, i.e. a strongly

axial symmetric deformation is assumed. In this case the deformation value is proportional
to the square root of the transition. For spherical and triaxial nuclei the formula is incorrect
and in general the deformations deduced are too high due to the fact that higher orders [1]
in deformation are also neglected. Nevertheless, the tables in Ref. [12] give a good idea
about the trends. Another possibility is to use the tables ofM. Sakai [15] where the ratio
(E(4+

1 )/E(2+
1 )) is investigated. For rotational nuclei the ratio is3.33 and for vibrational

nuclei it is2.0. Most nuclei lie in between these two values. For the three nuclei mentioned
above this ratio is1.99, 1.41 and3.15 respectively. Except for the last value, which is near to
a rotator, the data indicate a spherical deformation, in agreement with the data listed in Ref.
[12].

For 142
55 Cs87 as neighboring nuclei we took14254 Xe88, 142

56 Ba86 and for the core14054 Xe86.
The deformation values listed in Ref. [12] are0.157 and0.114 for the last two systems.
No information is listed for the first nucleus. Using the tables of Sakai [15], except for the
first nucleus were we used the ISOTOPE EXPLORER [13], the ratio of (E(4+

1 )/E(2+
1 )) are

respectively2.41, 2.32 and2.22. They hint to a spherical nucleus while theβ values are in
between. In Ref. [11] a deformed nucleus was assumed, which are not confirmed by data.

4.2.2 Trinuclear Quasimolecules with Spherical Clusters

In the subsection 4.2 we treated the10Be-like Giant Trinuclear Molecule (GTM) with all
three clusters deformed and sitting in the equilibrium configuration with their symmetry
axes aligned. The light cluster was sandwiched in-between the two heavier fragments. A
large variety of collective modes are showing-up such as thebutterfly, belly-dancer which
are molecular vibrations, rotations of the whole system andalsoβ andγ vibrations of each
clusters. Only a few vibrational states are showing-up below 1 MeV, the rotational states of
the ground state band being strongly squeezed. The first 2+ state is at approximately 5-6 keV
and the 4+ state at approximately 17-19 keV, whereas the butterfly motion lies at energies
around 2.5 MeV.

Fundamentally in our treatment is the existence of a minimumin the total heavy-ion
potential which arises as a consequence of the interplay between the repulsive-attractive nu-
clear forces and the purely repulsive Coulomb interaction.When this is valid for the case of
10Be-accompanied ternary fission then quasi-molecular configurations could develope also
in theα-accompanied ternary cold fission. For the time being there is no evidence of such
a molecule because of the ”inert” nature of the LCP, whose first excited lays at 20 MeV. In
the present paper we study the molecular spectrum of anα-like GTM whose heavy partners
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are also spherical clusters with the aim to understand the differences between the triangu-
lar (oblate) configuration, which is the best candidate of a GTM in our view, and the linear
(prolate) one.

The Three Spherical Clusters Hamiltonian

The Hamiltonian for three clusters with massesm1, m2 andm3 interacting by means of two-
body forces has the form

H =
p1

2m1
+

p2

2m2
+

p3

2m3
+ V12 + V23 + V13 (4.162)

In [3, 4, 18] this problem was handled by separating out the centre-of-mass motion and
introducing Jacobi coordinates. The cartesian space coordinates being denoted byr1, r2 and
r3, the Jacobi coordinates, for which the two heavier clusters1 and 2 appear explicitely as a
subsystem, are introduced by means of the following transformations:

ρ = r2 − r1

λ =
m1r1 +m2r2

m1 +m2
− r3

Rc.m. =
m1r1 +m2r2 +m3r3

m1 +m2 +m3
(4.163)

The corresponding transformation for momentum coordinates becomes:

pρ =
m1p2 −m2p1

m1 +m2

pλ =
m3(p1 + p2) − (m1 +m2)p3

m1 +m2 +m3

(4.164)

P c.m. = p1 + p2 + p3 (4.165)

The momentumpρ, which is canonically conjugate toρ, is the relative momentum of the
particles 1 and 2, andpλ, which is canonically conjugate toλ, is the relative momentum of
cluster 3 relative to a mass(m1 +m2) at the center of mass of cluster 1 and 2.

In Jacobi coordinates, the Hamiltonian has the form

H =
1

2(m1 +m2 +m3)
P 2 +

1

2µ12
p2

ρ +
1

2µ(12)3
p2

λ +

3∑

i6=j=1

Vij (4.166)

with the reduced masses

µ12 =
m1m2

(m1 +m2)
, µ12 =

m3(m1 +m2)

m1 +m2 +m3

Next we define the components of the vectorsρ andλ according to the geometry adopted in
Fig.4.10.

ρ = (ρ sin aγ, 0, ρ cos aγ), λ = (−λ sin(1 − a)γ, 0, λ cos(1 − a)γ) (4.167)
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Figure 4.10: The three-body problem : the vectorρ joining the heavier clusters 1 and 2 makes an
angleaγ with thez-axis.

This corresponds to define the intermediatez-axis in between the two vectors (see Fig. 4.10).
For a=0 the vectorρ lies along thez-axis. For reasons that will become transparent below
we are not choosingρ along thez-axis.

The kinetic energy

The components ofρ andλ in the laboratory system are defined in eq.(4.167). We rotate
these vectors in thex-z plane of the molecular system (see Fig.4.10)

¯̺i =
∑

k

D1
ki(θ)̺k λ̄i =

∑

k

D1
ki(θ)λk. (4.168)

For the time-derivative of the rotation matrix acting on thecartesian components ofρ andλ

we use:
Ḋij =

∑

k

ΩikDkj . (4.169)

with Ωij = −Ωji as an antisymmetric matrix whose components are the angularvelocity in
the plane(ij) :

Ω =




0 ω′3 −ω′2
−ω′3 0 ω′1

ω′2 −ω′1 0




After substituting in (4.168) the ansatz (4.167) we get the new forms ofρ andλ which are
to be used in the classical expression of the kinetic energy (4.172)

ρ̇2 = ρ̇2 + a2ρ2γ̇2 + ρ2
[
cos2(aγ)ω′21 + ω′22 + sin2(aγ)ω′23

]

− ρ2 sin(2aγ)ω′1ω
′
3 + 2aρ2ω′2γ̇ (4.170)

λ̇
2

= λ̇2 + (1 − a)2λ2γ̇2 + λ2
[
cos2((1 − a)γ)ω′21 + ω′22 + sin2((1 − a)γ)ω′23

]

+ λ2 sin(2(1 − a)γ)ω′1ω
′
3 − 2aλ2ω′2γ̇ (4.171)
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After inserting the ansatz (4.167) forρ andλ we obtain the following expression for the
classical kinetic energy (with C.M. part excluded)

Tcl =
1

2
µ12ρ̇

2 +
1

2
µ(12)3λ̇

2

=
1

2
µ12ρ̇

2 +
1

2
µ(12)3λ̇

2 +
1

2

[
µ12a

2ρ2 + µ(12)3(1 − a)2λ2
]
γ̇2

+
1

2

{
µ12ρ

2 cos2(aγ) + µ(12)3λ
2 cos2[(1 − a)γ]

}
ω′21

+
1

2

(
µ12ρ

2 + µ(12)3λ
2
)
ω′22

+
1

2

{
µ12ρ

2 sin2(aγ) + µ(12)3λ
2 sin2[(1 − a)γ]

}
ω′23

− 1

2

{
µ12ρ

2 sin(2aγ) − µ(12)3λ
2 sin[2(1 − a)γ]

}
ω′1ω

′
3

+
[
µ12aρ

2 − µ(12)3(1 − a)λ2
]
ω′2γ̇ . (4.172)

whereω′ ≡ (ω′1, ω
′
2, ω

′
3) is the angular velocity of the molecular frame.

The above expression looks at first glance rather involved, but by a convenient choice of
the parametera, depending also on which configuration we are interested in,the unwanted
non-diagonal terms can be removed.

The potential

The interaction between the nuclei composing the quasi-molecule is taken as in previ-
ously to result from a heavy-ion double folding integral.

The total ternary potential which occurs in the Hamiltonian(4.162) is plotted in Fig.4.11
for two different inter-fragment distances between the heavier clusters, namely132Sn and
116Pd. As can be noticed on this figure the potential displays a quasi-molecular pattern with
two minima in the equatorial region and two at the poles of thesystem. Due to the axial
symmetry, the minima in the equatorial region are equivalent, and actually one may speak
about a ring which represents the geometrical locus of the points where the three-body po-
tential attains its absolute minimum. This is the case forR = 11 fm, i.e. when the two
heavier clusters are in the touching configuration. When thedistanceR is increased up to
R = 15.35 fm the above mentioned ring shrinks to a point on the symmetry axis. In order
to better understand this circumstance we displayed in Fig.4.12 the minimum value of the
total ternary potential for different values ofR. ForR=11 fm, the system has a triangular
configuration and a stable minimum is obtained whereas forR=15.35 fm, the clusters are
aligned and the minimum is unstable. As a matter of fact, multidimensional tunneling cal-
culations reported in [19] showed that the dynamical trajectory of theα particle will always
be repelled from the symmetry axis and the system preserves its triangular geometry dur-
ing the three-body break-up. It is also worthwhile to mention that preformation calculations
carried out recently [20] are leading to the conclusion thatwhen the two heavier fragments
are at scission (touching point) theα-preformation amplitudes are showing-up a pronounced
maximum off the fission axis, that is the third lighter cluster is preformed from the mother
nucleus off the symmetry axis.
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Figure 4.11: The total ternary potential in a three-dimensional plot (left panel) and a contour plot
(right panel) for the GTM132Sn+ α +116Pd. The upper pannels are corresponding to an interfrag-
ment distanceR=11 fm whereas the lower to 15.35 fm

Next, the potential is expanded up to quadratic terms aroundthe molecular minima :

Vcl =
1

2

3∑

i>j=1

Cij(rj − ri)
2 =

1

2
Cρδρ

2 +
1

2
Cλδλ

2 + Cρλδρδλ (4.173)

where the relation between the two sets of stiffness parameters is given by

Cρ = C21 +
C32m

2
1 + C31m

2
2

(m1 +m2)2

Cλ = C32 + C31

Cρλ =
C32m1 − C31m2

m1 +m2
(4.174)
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Figure 4.12: The minimum value of the total ternary potential (upper panel) and the position on the
y-axis of this minimum (lower panel) as a function of the inter-fragment distanceR.

In eq.(4.173) the value of the potential energy at the minimum configuration was omitted
since it will contribute as a constant term.

Substituting (4.167) in (4.173), and neglecting the terms proportional toa anda2, which
are small as one shall see later, we get the following expression for the potential energy

Vcl ≈ 1

2
Cρδρ

2 +
1

2
Cλδλ

2 +
1

2
Cλλ

2δγ2

+ Cρλ(δρδλ cos γ − λδρδγ sin γ) , (4.175)

The Collective Spectrum

The Triangular Configuration

The kinetic energy (4.172) contains two types of couplings :a Coriolis coupling and a
rotation-vibration interaction. In the case of a triangular configuration it is worthwhile to
remove the last non-diagonal contribution by choosing

a =
µ(12)3λ

2

µ12ρ2 + µ(12)3λ2
. (4.176)

With this eq.(4.172) is rewritten as
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Tcl =
1

2
µ12ρ̇

2 +
1

2
µ(12)3λ̇

2 +
1

2

µ12µ(12)3ρ
2λ2

µ12ρ2 + µ(12)3λ2
γ̇2

+
1

2

{
µ12ρ

2 cos2(aγ) + µ(12)3λ
2 cos2[(1 − a)γ]

}
ω′21

+
1

2

{
µ12ρ

2 + µ(12)3λ
2
}
ω′22

+
1

2

{
µ12ρ

2 sin2(aγ) + µ(12)3λ
2 sin2[(1 − a)γ]

}
ω′23

− 1

2

{
µ12ρ

2 sin(2aγ) − µ(12)3λ
2 sin[2(1 − a)γ]

}
ω′1ω

′
3 (4.177)

We next specialize our considerations to the case of the GTM132Sn + α + 116Pd which
presumably occurs in theα-accompanied ternary cold fission of252Cf. Picking-up forρ and
λ their values at the minimum configuration, we obtaina ≈1/300. Thereforea ≪1 and
several terms of the above expression can be safely left out,as have been done above with
some potential terms. Moreover we can approximate thatγ consists of small deviations from
π/2, i.e. we perform the change of variableγ = π/2 − ε (this is so because we are not far
from the totally symmetric case withA1 = A2). Under this circumstance one get the new
expression

Tcl ≈ 1

2
µ12ρ̇

2 +
1

2
µ(12)3λ̇

2 +
1

2
µ(12)3λ

2ε̇2

+
1

2
µ12ρ

2(ω′21 + ω′22 ) +
1

2
µ(12)3λ

2ω′23 + µ(12)3λ
2εω′1ω

′
3 (4.178)

Applying the Pauli-Podolsky quantization method [1] we obtain

T̂ = − ~
2

2µ12

∂2

∂ρ2
− ~

2

2µ(12)3

∂2

∂λ2
− ~

2

2µ(12)3λ2

∂2

∂ε2

+
~

2

2µ12ρ2
(L2 − L′23 ) +

~
2

2µ(12)3λ2
L

′2
3 − ~

2ε

µ12ρ2
L′1L

′
3 (4.179)

As one can see this form contains couplings between the different vibrational (specified by
the observablesρ, λ andε) and rotational (specified by the angular momentum) modes ina
non-trivial way. At this stage we assume that near the minimum’s position the displacements
δρ, δλ andε are not large with respect to the equilibrium valuesy0 = ρ0, λ0 andε0 = 0,
i.e. y = y0 + δy, with δy ≪ 1. Under this assumption one can expand in Taylor series all
coordinate functions of the kinetic energy and potential energy operators. Formally one can
write :

Ĥ = Ĥ(0) +
∑

i

δyiĤ
(1)
i +

1

2

∑

ij

δyiδyjĤ
(2)
ij + . . . (4.180)
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For the moment we restrict ourselves to the zeroth-order approximation and we get

Ĥ(0) = − ~
2

2µ12

∂2

∂ρ2
− ~

2

2µ(12)3

∂2

∂λ2
− ~

2

2µ(12)3λ2
0

∂2

∂ε2

+
~

2

2µ12ρ2
L2 +

~
2

2

(
1

µ(12)3λ2
0

− 1

µ12ρ2
0

)
L

′2
3

+
1

2
Cρδρ

2 +
1

2
Cλδλ

2 +
1

2
Cλλ

2
0δε

2 − Cρλλ0δρε (4.181)

Note that in the zeroth-order approximation the kinetic non-diagonal term∝ L′1L
′
3 and the

potential non-diagonal term∝ δρδλ are not present.
Due to the degeneracy of the problem the eigenfunctions of the Hamiltonian must be

constructed as linear combinations of the rotation matrices DI
MK . SinceL2 andL′z are

commuting withĤ0 only combinations of differentK-values for the sameI andM are
occuring

Ψ =

+I∑

K=−I

F I
K(ρ, λ, γ)DI

MK(θ) (4.182)

and the Schrödinger equation corresponding to the eigenvalueE reads:
{

1

µ12

∂2

∂ρ2
+

1

µ(12)3

∂2

∂λ2
+

~
2

µ(12)3λ
2
0

∂2

∂ε2
(4.183)

− Cρ(ρ− ρ0)
2 − Cλ(λ− λ0)

2 − Cλλ
2
0ε

2 + 2Cρλλ0ε(ρ− ρ0)

+
1

µ12ρ2
0

I(I + 1) +

(
1

µ(12)3λ
2
0

− 1

µ12ρ2
0

)
K2 + 2E

}
F I

K = 0 (4.184)

We therefore have an equation which describes three one-dimensional oscillators, two of
them being coupled through a coordinate-coordinate term, i.e. there is a potential coupling
between the modesρ andε. The decoupling of these two modes can be easily done by means
of an unitary transformation [21]

Û = exp

{
iη

(√
µ12

µ(12)3

ρ

λ0

∂

∂ε
−
√
µ(12)3

µ12
λ0ε

∂

∂ρ

)}
(4.185)

whereη is obtained from the following implicit equation

tan 2η = − 2Cρλ√
µ12µ(12)3(ω2

ρ − ω2
ε)

(4.186)

such that the non-perturbed spectrum reads

E
(0)
IKnρnεnλ

= ~ω̃ρ

(
nρ +

1

2

)
+ ~ω̃ε

(
nε +

1

2

)
+ ~ωλ

(
nλ +

1

2

)

+
~

2

2µ12ρ
2
0

[
I(I + 1) −K2

]
+

~
2

2µ(12)3λ
2
0

K2 (4.187)
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the frequencies being defined as follows

ωρ =

√
Cρ

µ12
, ωλ = ωε =

√
Cλ

µ(12)3

(4.188)

ω̃2
ρ(ε) =

1

2

(
ω2

ρ + ω2
ε ± (ω2

ρ − ω2
ε) sec 2η

)
(4.189)

providedω̃ρ > ω̃ε.
We have yet to consider the action of the parity transformation on the three cluster sys-

tem. This will tell us the parity of a given state and the sequence of positive and negative
parity states within rotational bands. To start with, note that all three clusters have different
masses. We therefore can define the intrinsic system, the molecular plane in a definite man-
ner. According to Fig. 4.10 cluster number 1 is left to cluster number 2, as seen with respect
to the molecularz-axis. The third cluster is in the upper plane with a positivex value. This
defines the equilibrium position around which small oscillations are considered. After the
parity transformation is applied, the cluster 2 is to the left of cluster 1 and cluster 3 is in the
lower half plane. In order to fulfill the same conditions of the molecular intrinsic system, as
defined above, we have to apply an additional rotation in order to come back to the situation
where cluster 2 is to the right of cluster 1 and cluster 3 is again in the upper plane. This
rotation is given by

R̂(x, y, z) = (−x, y,−z) . (4.190)

Note that the relative angles do not change, i.e.γ stays the same. This is easy to under-
stand, because the triangular equilibrium position is welldefined and the relative angles do
not change. Therefore, the parity transformation implies only a redefinition of the rotational
angles with respect to the laboratory. The effect of this rotation is obtained by applyinĝR
to the rotation matrices in Eq. (4.182). This rotation is a subsequent application of changing
first (x, y, z) to (x,−y,−z) and an additional one by1800 around the newz-axis. The action
is described in Ref. [1] and the result is

R̂DI
MK(θ) = (−1)I+KDI

M−K(θ) . (4.191)

Therefore the rotational part of the solution in Eq. (4.182)has to be modified such that the
states have a definite parity. This is achieved by

(DI
MK ± (−1)I+KDI

M−K) , (4.192)

where the positive parity states are given by the plus and thenegative ones by the minus sign.
AlsoK has to be positive in order to avoid double counting. The Eq. (4.192) immediately
gives us a selection rule for the caseK = 0. The sequence of states is

K = 0 : 0+, 1−, 2+, 3−, 4+, ..., (4.193)

i.e. forK = 0 bands positive and negative parity states are alternating.Like in the case of
octupole deformed nuclei [1] the symmetry related to the reflexionz −→ −z is broken in the
GTM due to the fact that the clusters 1 and 2 are not identical although in the case considered
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in this paper they have close masses. Consequently the condition thatK is restricted to even
integers is not valid in this case. ForK 6= 0 there is no selection rule and for a given angular
momentum there is aparity doublet:

K 6= 0 : K±, (K + 1)±, (K + 2)±, ..., (4.194)

Including also the quadratic terms from the expansion (4.180) we must add to the zeroth-
order Hamiltonian (4.181) the below listed perturbation.

δĤ(2) =
~

2

2µ(12)3λ
3
0

(
2 − 3

δλ

λ0

)
δλ

(
∂2

∂ε2
− L′23

)

− ~
2

2µ12ρ2
0

[(
2 − 3

δρ

ρ0

)
δρ

ρ0
(L2 − L′23 − 1) − 2

(
1 − 2

δρ

ρ0

)
εL′1L

′
3

]

+

[
Cλλ0δλ− 3~

2

4µ12ρ2
0

(
1 + 2

µ(12)3λ
2
0

µ12ρ2
0

)]
ε2, (4.195)

and second-order corrections to (4.187) can be computed according to the stationary pertur-
bations theory.

In Fig.4.13 we represented the rotational states with energy smaller than 1 MeV for the
g.s. band and the band withK= 1 and 2 of the GTM132Sn +α +116Pd. The excited rotational
state 1−1 is at 5.4 keV, and the 2+1 state at 16.8 keV. The first state of theK = 1 band is at
213 keV whereas the 2+ state of theK = 2 band is at 836 keV. The heads of the vibrational
bands are laying at much higher energy, and were not plotted on this figure. For example
the band head (nρ = 1, nλ = nε = 0) is located at 3.85 MeV, a state which however could
be reached in cold fission. We also compared on the same figure the results obtained in the
nonperturbed case and taking into account the perturbation. It is easy to infer from here that

,
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Figure 4.13: The first rotational bandsK = 0, 1, 2 in the zeroth-order approximation (full lines) and
with the account of the first order perturbation (dashed lines).
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taking only the zeroth-order Hamiltonian is a satisfactoryapproximation.

The Linear Configuration

In this case the center-of-masses of the three clusters are sitting on the same axis in the
equilibrium position and the bending of this configuration is described by the angleγ ≡ ε.
In order to cope with the non-diagonal terms we first equate tozero the factor multiplying
ω′1ω

′
3 which provides the following equation for the parametera

tan 2aγ =
µ(12)3λ

2 sin 2γ

µ12ρ2 + µ(12)3 cos 2γ

which for very small values ofγ coincides with (4.176). This makes that also the coupling
ω′3γ̇ disappears and the classical kinetic energy of the linear GTM reads :

Tcl ≈ 1

2
µ12ρ̇

2 +
1

2
µ(12)3λ̇

2 +
1

2

µ12ρ
2µ(12)3λ

2

µ12ρ2 + µ(12)3λ2
ε̇2

+
1

2
(µ12ρ

2 + µ(12)3λ
2)(ω′21 + ω′22 ) +

1

2

µ12ρ
2µ(12)3λ

2

µ12ρ2 + µ(12)3λ2
ε2ω′23 (4.196)

Upon quantization one gets

T̂ = − ~
2

2µ12

∂2

∂ρ2
− ~

2

2µ(12)3

∂2

∂λ2
− ~

2

2

(
1

µ(12)3λ2
+

1

µ12ρ2

)
∂2

∂ε2

+
~

2

2(µ12ρ2 + µ(12)3λ2)
(L2 − L′23 ) +

~
2

2ε2

(
1

µ(12)3λ2
+

1

µ12ρ2

)(
L′23 − 1

4

)

(4.197)

Using the same approximations as in the previous case we obtain for the fluctuating part of
the potential in the zeroth-order approximation

V̂ =
1

2
Cρδρ

2 +
1

2
Cλδλ

2 +
1

2
Cλλ

2
0ε

2 +
1

2
Cρλδρδλ (4.198)

Thus in the linear case we deal with aρ-λ coupling instead of aρ-ε one. Undertaking the
same steps as previously, the zeroth-order spectrum is readily computed :

E
(0)
IKnρnεnλ

= ~ω̃ρ

(
nρ +

1

2

)
+ ~ω̃λ

(
nλ +

1

2

)
+ ~ωε

(
|K| + nε +

3

2

)

+
~

2

2(µ12ρ2
0 + µ(12)3λ

2
0)

[
I(I + 1) −K2

]
(4.199)

where the frequencies are defined as follows

ω̃2
ρ(λ) =

1

2

(
ω2

ρ + ω2
λ ± (ω2

ρ − ω2
λ) sec 2η

)
(4.200)
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Figure 4.14: The three cluster molecule is presented via three mass points. Between each two mass
points a spring is plotted, representing the approximate harmonic interaction between these mass
points. The numbers 1 to 3 enumerate the clusters.

in caseω̃ρ > ω̃λ and

ωε = λ0

√
Cλ

(
1

µ(12)3λ2
+

1

µ12ρ2

)
(4.201)

The parameterη is determined from a relation similar to (4.186) with the difference thatε is
traded forλ.

tan 2η = − 2Cρλ√
µ12µ(12)3(ω2

ρ − ω2
λ)

The rotational spectrum of the linear molecule is approximately two times more com-
pressed than the one corresponding to the triangular configuration. This time the excited
rotational 1−1 state is at 2.8 keV and the 2+

1 state at 8.33 keV. Since the molecule is linear
there is a pronounced hindrance toK 6=0 rotations, the state 1± of theK =1 band being
located at 14.5 MeV. The first vibrational band heads are located at almost the same energies
as in the triangular case.

4.3 Algebraic Models

4.3.1 U(7) Model of Trinuclear Quasimolecules

In the subsection 4.2 the GTM was treated by assuming that : i)the system is in a linear
configuration, ii) the inclination angles of the nuclear symmetry axis to the axis which de-
fines the linear orientation should be very small and iii) thelight cluster has to be sandwiched
between the two heavy ones. An algebraic model, inspired by previous work on baryon struc-
ture [22], might overcome these restrictions. The advantage of this model is the easiness in
how one can describe complicated systems, which would require complex procedures in the
geometrical model. Also it permits to discuss possible dynamical symmetry limits, allowing
for an analytical description of the spectrum. This latter part will not be discussed here. The



4.3 Algebraic Models 163

main idea of the algebraic model were presented in [23]. The main problem is how to ob-
tain the model parameters starting from known stiffness parameters, describing the pairwise
interaction between the clusters. On one side we will have the picture of three masses con-
nected via a spring (see Fig. 4.14) and on the other side thereis the algebraic model. The
mapping can not be one-to-one but it should reproduce at low energies similar frequencies
of thevibrational modes. For the rotational part we will assume a simple expression. The
model does not contain yet the vibrational contributions ofthe individual clusters, i.e. noβ
andγ vibrations. In other words, the clusters are treated without structure yet. Without any
inner structure, a geometrical model can still be carried out, as shown in this paper. How-
ever, the introduction of structure to the clusters will be straight forward within the algebraic
model and without the problems involved in the geometrical treatment. As one possibility,
one can introduce the IBA-I Hamiltonian [24] for the individual clusters, using a dynamical
symmetry limit for simplicity. As it turned out in Ref. [18],the dominant contribution to the
energy of a linear configuration comes from the relative motion of the nuclei and not from
the deformation of the clusters. The deformation plays a role in the vibrational modes of the
individual clusters.

In what follows we will briefly present the U(7) model and the Hamiltonian.
In [22] an algebraic model for three particles with identical mass was proposed, in the

context of the orbital excitations of quarks. In [25] the model was extended to three particles
with, in general, different masses, intended to be applied to atomic molecules. The U(7)
model, whose name will become more transparent further below, can be applied to any kind
of three particle systems, as the three-cluster molecule [18], discussed in the introduction.

The number of degrees of freedom are six and for each relativecoordinate we can intro-
duce boson creation and annihilation operators, carrying negative parity. The basic concept
of the U(7) model is to introduce a cutoff through the addition of a scalar boson of positive
parity. With this the spherical components of the creation operators are given by

p†ρ,m, p†λ,m, s† (m = −1, 0, 1). (4.202)

The total number of bosonsN = nρ + nλ + ns is conserved, which implies that the total
number ofp-bosons is restricted between zero andN .

Taking all possible double bilinear products of a creation with an annihilation operator,
we obtain the algebra u(7) with its 49 generators. A convenient form of the generators in
terms of tensors with definite angular momentum is given in Eq. (5) of Ref. [25]. The clas-
sification and the structure of possible dynamical subgroups is given in Ref. [22]. The most
convenient basis, with respect to which the model Hamilton operator will be diagonalized,
is the one given by Eq. (4.2) of Ref. [22]. The basis states aregiven by

| N, (nρ, Lρ), (nλ, Lλ);LML > , (4.203)

with nρ andnλ the number operator of theρ- andλ- oscillation quanta respectively. TheLρ

andLλ are the angular momenta of theρ andλ part,L is the total angular momentum and
ML its projection.

As the model Hamiltonian we use the one given by Eq. (12) of Ref. [25] plus a rotational
energy contribution. We will resume it here for completeness:

H = aLL2 + AP †1P1 + CP †2P2 + CP †3P3

+ D(P †1P2 + P †2P1) + E(P †1P3 + P †3P1) + F (P †2P3 + P †3P2) . (4.204)
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The operatorsPi are defined via

P †1 = p†ρ · pρ + p†λ · pλ − R2
0s
†s†

P †2 = sin2 β0 p
†
λ · pλ − cos2 β0 p

†
ρ · pρ

P †3 = sin(2β0)p
†
ρ · pλ − cos γ0(sin

2 β0 p
†
λ · pλ + cos2 β0 p

†
ρ · pρ) , (4.205)

where the parameterR0 =
√

ρ0 · ρ0 + λ0 · λ0 describes the extension of the system. The
β0 is defined by the relative size ofρ andλ, i.e. λ0 = R0 cosβ0 andρ0 = R0 sin β0, andγ0

gives the angle between the two vectors. The index zero indicates the equilibrium position
of the system around which the oscillations take place. The parametersR0, β0 andγ0 can be
related to the definition of a coherent state, which at these values describes the approximate
eigenstate of the system [25]. The coherent state is defined via

| NR0, β0γ0 >=
1√
N !

(b†c)
N | 0 > , (4.206)

where

b†c =

[
s† +R0 cosβ0p

†
λ,x +R0 sin β0(cos γ0p

†
ρ,x + sin γ0p

†
ρ,y)
]

√
1 +R2

0

is called thecondensate boson. For more details, see Ref. [25] and references therein.
In order to describe the motion around the equilibrium position, fluctuation bosons are

introduced in [25], which are orthogonal tob†c. These areb†u, describing the breathing mode,
b†v, the butterfly mode, andb†w is the mode where the angleγ between the vectorsρ andλ is
changing (shearing mode).

A Bogoliubov treatment is applied, where theb†c andbc are substituted by their expec-
tation value

√
N and only leading terms inN are taken into account. The Hamiltonian

obtained has the form
HB =

∑

α1,α2

εα1α2b
†
α1
bα2 (4.207)

with i, j = u ,v, w. The frequencies are given by [25]

εu = 4ANR2
0

εv = BNR2
0 sin2(2β0)/(1 +R2

0)

εw = CNR2
0 sin2(2β0) sin2 γ0/(1 +R2

0)

εuv = 2DNR2
0 sin(2β0)/

√
1 +R2

0

εuw = 2ENR2
0 sin(2β0) sin γ0/

√
1 +R2

0

εvw = FNR2
0 sin2(2β0) sin γ0/(1 +R2

0) . (4.208)

These are the estimates of the lowest frequencies, which we will need later in order to relate
them to those calculated in a nuclear interaction model.

In order to determine the parameters of the U(7) model, in a first step the stiffness of os-
cillations between each two of the three clusters is determined. For illustration, see Fig.4.14
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where the interaction between two clusters is presented viaa spring. Afterwards we will
apply several steps until we can compare the energies at low values to those of the Hamilton
of eq. (4.207). Because the Hamiltonian, in a geometrical picture, is not identical to the one
of the U(7) model, we will require that the lowest frequencies are similar. The geometrical
potential, we start with, is itself an approximation to the one calculated between the nuclei,
i.e. a mapping which reproduces the lowest frequencies is more than sufficient. The mapping
is necessary because in the algebraic model there is no direct relation to the stiffnesses which
are calculated in a nuclear interaction model.

The stiffness coefficients are again calculated using the double folding potential and the
resulting potential can exhibit at some point a minimum. A quadratic expansion around this
minimum is made, giving the stiffnessCij of the potential between clusteri andj.

The relevant degrees of freedom of the three particle system, excluding the center of mass
motion, can be cast into Jacobi coordinates, and defined in (4.163). This definition deviates
by some factors to the one given in [25]. It is not relevant forthe further steps. Doing the
same for the coordinates at the equilibrium position, we candefineδρ = ρ − ρ0 andδλ =
λ−λ0. This allows us to relate the spatial differences between two clusters to the difference
vectorsδρ andδλ. Further we have

r2 − r1 = ρ

r3 − r1 =
m2

m1 +m2
ρ − λ

r2 − r3 =
m1

m1 +m2
ρ + λ , (4.209)

wheremk refer to the masses involved.
The classical Hamiltonian, from which we start, and where the center of mass motion is

excluded already, is given by

Hcl =
µ12

2
δρ̇2 +

µ(12)3

2
δλ̇

2
+
Cρ

2
δρ2 +

Cλ

2
δλ2 + Cρλδρ · δλ (4.210)

with

Cρ = C21 +
C23m

2
1 + C31m

2
2

(m1 +m2)2

Cλ = C23 + C31

Cρλ =
C23m1 − C31m2

m1 +m2

(4.211)

andµ12 is the reduced mass between cluster 1 and 2, whileµ(12)3 is the reduced mass between
cluster 3 and the combined mass(m1 +m2) at the position of the center of mass of the first
two clusters.

When the vectorλ is defined along the molecularx axis and the vectorρ in the molec-
ular (xz)-plane (note that the moleculary-axis is defined perpendicular to the plane of the
molecule) the potential acquires the form

Vcl =
Cρ

2
δρ2 +

Cρ

2
ρ2

0δγ
2 +

Cλ

2
δλ2 + Cρλ(cos γ0δρδλ− ρ0 sin γ0δγδλ) (4.212)
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whereγ0 andρ0 are the equilibrium values ofγ andρ at the potential minimum and an
expansion up to quadratic terms was made. We are interested in the pure vibrational part
only. Excluding the rotational part and possible mixings the kinetic energy is given by

T̂vib =
µ12

2
δρ̇2 +

µ(12)3

2
δλ̇2 +

µ12ρ
2
0

2
δγ̇2 . (4.213)

Theρ andλ give the length of the corresponding vectors.
The classical Hamiltonian is quantized using the Pauli-Podolsky procedure [1]. The

expression is given by

T̂vib = − ~
2

2µ12

∂2

∂ρ2
− ~

2

2µ(12)3

∂2

∂λ2
− ~

2

2

(
1

µ12ρ2
0

+
1

µ(12)3λ
2
0

)
∂2

∂γ2
. (4.214)

In order toestimatethe vibrational energies we set, for a brief moment,Cρλ = 0. This is
the case where the coupling terms of the potential betweenλ, ρ andγ vanish. The vibrational
part of the Hamiltonian can be solved analytically with the frequencies

ερ = ~

√
Cρ

µ12

ελ = ~

√
Cλ

µ(12)3

εγ = ~

√
Cρρ2

0

(
1

µ12ρ2
0

+
1

µ(12)3λ
2
0

)
. (4.215)

They refer to thefluctuationsin ρ, λ andγ respectively.
For the rotational part we assume a simple formaL2. More terms can be introduced, like

L2
ρ or L2

λ (see ref. [25]). As for the valuea we take 1
2Θ0

, with Θ0 = (µ12ρ
2
0 + µ(12)3λ

2
0) which

is the largest moment of inertia possible. For the rotational kinetic energy we finally have

T̂rot =
~

2

2(µ12ρ2
0 + µ(12)3λ

2
0)

L2 , (4.216)

which is still too simple because in general mixing terms like Lk1Lk2 occur. These terms
have to be simulated by some combination of operators of the U(7) model, which has not
been done yet.

A problem is still related to the interaction part. If we substitute the fluctuation coordi-
natesδρ, δλ andδγ in terms of their boson creation and annihilation operators, terms of the
typep†p† appear, not conserving the number of bosons. One possible proposal is to substitute
it by

δρδλ → 1

2
(δρδλ + πδρπδλ)

δγδλ → 1

2
(δγδλ+ πδγπδλ) , (4.217)
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whereπδρ, πδλ andπδγ are the conjugate momenta to the corresponding coordinates. Here
we really change the original Hamiltonian. The change is justified by three arguments: i)
the frequencies in (4.215) are of the order of several MeV, which implies that the mixing
between the oscillations, given by the termsp†p†, is probably small (2~ωα excitations) and
ii) the parameter in front of this interaction turns out to besmall for the system discussed. iii)
The Hamiltonian, we started with, is itself an approximation and changing it to the more ad-
vantageous form of the U(7) model might not change much. Nevertheless, in other situations
the procedure might not be valid.

As the next step we relate the fluctuations inρ, λ andγ to the breathing (u), the butterfly
(v) and the shearing mode (w). Inspired by [25] we take

p†δρ = sin β0b
†
u − cos β0b

†
v

p†δλ = cos β0b
†
u + sin β0b

†
v

p†δγ = p†w . (4.218)

With this we find as the final vibrational Hamiltonian

Ĥvib = εub
†
ubu + εvb

†
vbv + εwb

†
wbw

+ εuv(b
†
ubv + b†ubv) + εuw(b†ubw + b†ubw)

+ εvw(b†vbw + b†wbv) , (4.219)

with

εu = ερ + ελ +
Cρλ~

2[µ12Cρµ(12)3Cλ]
1
4

sin β0 cos β0 cos γ0

εv = ερ + ελ −
Cρλ~

2[µ12Cρµ(12)3Cλ]
1
4

sin β0 cosβ0 cos γ0

εw = εγ

εuv = (ελ − ερ) sin β0 cosβ0 −
Cρλ~

2[µ12Cρµ(12)3Cλ]
1
4

cos γ0 cos(2β0)

εuw = − Cρλ~

2[µ12Cρµ(12)3Cλ]
1
4

sin γ0 cosβ0

εuv = − Cρλ~

2[µ12Cρµ(12)3Cλ]
1
4

sin γ0 sin β0 . (4.220)

These values have to be compared to the ones given in (4.208).

Application to 132Sn+ α + 116Pd

The double folding potential provides us the values of the stiffness coefficients in the quadratic
approximation as discussed in 4.2.2 Since the present modelcopes with spherical clusters
only the monopolar term is retained in the expansion of the potential.

For theα particle we use a gaussian-like density with a width parameterβ = 0.69fm−1.
For the strength of the compression termVcomp,0 we used for exemplification 2 choices: 1)
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Vcomp12 Vcomp23 Vcomp13 K12 K23 K13

187.5 228.7 225.5 214.9 213.2 218.8

300. 300. 300. 383. 327. 324.

R12min(ρ0) R23min R13min λ0 β0 γ0

11.0 7.37 7.65 5.14 65o 84o

11.1 7.53 7.82 5.34 64o17’ 84o

C12 C23 C13 Cρ Cλ Cρλ

97.3 17.77 10.29 104.59 28.06 -4.64

163.8 25.43 12.63 173.8 38.06 -7.63

Table 4.4: Relevant parameters of the theory, including the values forthe stiffness of the potential
parameters.

We seek to reproduce the nuclear compression modulusK in accordance to the nuclear EOS
(nuclear equation of state) [26] by varyingVcomp,0 separately for all the three pairs (see first
line of Table 4.4 where all the values are in MeV). 2) A unique value ofVcomp,0 = 300 MeV
is used, as have been done in a calculation ofα-like nuclear molecules life-times [27](see
second rows of Table 4.4). This choice obviously leads to sensitively larger nuclear com-
pressibilities, which according to experiments on giant monopole resonance should range
between 180 and 240 MeV [28].

Along with the stiffness parameters we obtained also the location of the absolute minima
of the total ternary potential [29] which we chose to be the equilibrium position of our trian-
gular molecule. In Fig. 4.15 the situation is illustrated, where at the position 1 there is the
132Sn, at 2 the116Pd and at 3 theα particle. We obtained for the equilibrium positionsρ0 and

11fm

7.65fm 7.37fm

Sn Pd
132 116

a

Figure 4.15: The geometry of the system132Sn+ α + 116Pd.
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A[MeV] B[MeV] C[MeV] D[MeV]

0.0043428 4.3748 1.4507 0.018401

E[MeV] F [MeV] aL[MeV] -

-0.018401 -0.012917 -0.87808 -

Table 4.5: Parameter values of the U(7) Hamiltonian.

MeV keV

0 0

5 10

10 20

0      1     1     2     2
+ + +- -

0

1

2
+

+

+

-

-

Figure 4.16: The spectrum of132Sn+ α + 116Pd as obtained in the U(7) model. On the left hand
side all states up to spin 2 are shown, except for the excited states of the ground state band. The latter
are given on the right hand side. There is a degeneracy of positive and negative spin states for spin 1
and 2 in the ground state band.

λ0 the values11 fm and5.14 fm respectively. For the angleγ0 we obtain≈ 840.
Taking asN = 10 and using Eqs. (4.208), (4.211) and (4.220), we obtain the parameters

A toF andaL which are listed in Table 4.5.
Setting theCρλ equal to 0 does changeA, B, C andD only at the last digits shown,

howeverE andF are 0. This situation is the same as in the geometric picture when we ex-
tracted the eigenfrequenciesερ, ελ andεγ = ερ for Cρλ = 0. The values areερ = 8.386MeV,
ελ = 17.20MeV andεγ = 71.57MeV. The latter vibrational state is too high in order to be
believed to exist. After the mapping, this division intoερ andελ, which are nearly separated,
gets lost and there is a strong mixing between the breathing (u) and the butterfly (v) mode,
which manifests itself in a largeεuv. In order to compare the numerical evaluation to the
estimates of the frequencies as given in Eq. (4.215) and using the parameter values as given
in Table 4.4, we have to putC̺λ = 0 in order that the mixing between theρ- andλ-modes
does not alter the position of the vibrational states. We obtain as the lowest frequency for
the (u) and (γ) motion the values 9.1851MeV and 17.7067 MeV, while for the (v) mode we
have≈73MeV. These values are sufficiently close to the ones given above.

When the mixing due toCρλ is taken into account, the spectrum changes by shifting
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εu εv εw εuv εuw εvw

25.6083 25.5671 8.3857 3.4159 -2.3847 -5.1035

Table 4.6: Values of the parameters of Eq. (4.220), in MeV.

the vibrational modes to lower energies. In Figure 4.16 we present the spectrum obtained.
According to this, the ground state band is severely squeezed as for the case of the linear
molecule [18]. However, for the excited vibrational statesthere is no clear band structure
apparent. The reason is the following: In the zero order approximation of our mapping,
obtaining the valuesεα’s of Eq. (4.220), no Coriolis force is present in an apparentform.
However, in the1

N
corrections theU(7) model introduces Coriolis couplings leading to the

effect seen. Due to a strong Coriolis force, the band structure gets distorted.
The values of the vibrational parameters, as given in (4.220) are given in Table 4.6 where

it can be noticed that the mixing between the butterfly (v) and the breathing (u) mode is very
strong, i.e. it will be difficult to obtain states with a pure motion related to one of the two
modes. As it seems, in triaxial nuclear molecules, with two heavy and one light cluster, there
is no clear separation between theu- and thev-mode. In other configurations this might be
possible, when the value ofεuv is small compared toεu andεv.

One signature in theγ-spectrum for the existence of a three-cluster molecule would be
a transition from a vibrational state to levels in the groundstate rotational band. Because
the ground state band is strongly squeezed in energy, one should observe a splitting of the
transition line into several others with only a few keV apart. Selection rules in angular
momentum have to be taken into account and will limit the amount of splitted levels. For
example, anE1-transition from a1+ vibrational state is only allowed to decay to the1− and
2− levels of the ground state band (see Fig.4.16).
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[6] Ş.Mişicu, A.Sandulescu, F.Carstoiu, M.Rizea and W.Greiner, Il Nuovo CimentoA112
313 (1999).

[7] A.R.Edmonds,Angular Momentum in Quantum Mechanics(Princeton, New Jersey,
1974).
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