Chapter 4

Collective Quantum Dynamics of Two
and Three Interacting Heavy-lons

In the fusion of heavy-ions the nuclei can stick togetheaftime of10~'? or longer forming
thus quasi-molecular states. Since such times are conipamabven much longer than the
life time of collective states, it is then interesting todtuhe spectroscopy of such systems.

4.1 Geometrical Hamiltonian of Dinuclear Systems

4.1.1 Coordinate systems

For a dinuclear molecule we consider the following 7 degoédeeedom:w; = (o, B}, Yi)s
(1 = 1,2) the Euler angles of each nuclew®; = (R, ©, ®) defining the relative vector as
displayed in Fig.3.4 for two deformed nuclei. The axiss defined as the molecular axis
of the whole system. Then the intrinsic axes of each deformuteus are referred to this
molecular system. The anglés= 6, and® = 6, are giving the orientation of the-axis
and by the above definition also the orientationffor that system. Since the system of
principal axes of the nuclei does not necessarily coincidh e molecular one, a new
set of Euler anglesy; = (a4, 5i,7:), (i = 1,2), must be introduced in order to describe
the orientation of the interacting nuclei in the moleculanie by means of the following
transformation:

R(w;) = R(P,0,0)R(w;) (4.1)

whereR denote Euler rotations. The variablgsare set to zero because we suppose that no
guantum rotations around the symmetry axes of the nucleilbowed. Further the variables
a7 anda, are combined into the variablés = (a4 + «2) /2, which describes rotations of the
quasi-molecular system around the molecular axianda = (a; — o) /2 which describes
twisting of the two nuclei with respect to the same axis. Ttennew set of 7 degrees of
freedom is

qi = (91792,93704737 51,52) (4-2)

It is possible to define a different molecular frame, whosesaare the principal axes
of the total system. However such a system proves to be iecoent in analyses of decay
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4.1 Geometrical Hamiltonian of Dinuclear Systems 115

properties. Its’-axis does not necessarily coincide with the direction efrélative vector
R and consequently a complicated transformation must be lbetweeen the Euler angles of
the total system and the angular variables of the veRtor

4.1.2 The classical kinetic energy and its quantization

In the laboratory system the classical kinetic energy ofwtecenter-of-masses motions and
the rotational motions are

To = %ml’f"% + %mzvﬁ + %twljlwl + %tw2j2w2 4.3)
wherem, andm, are the masses of the two nuclei, and, denote the vector positions of
their c.m.. The vectorss, , are the angular velocities of the rotational motions of the t
nuclei. The inertia tensotg’; and.J , are defined in the coordinate frame of their principal
axes, i.e. they are diagonal.

In order to separate the c.m. motion, the c.m. position veRtg, and the relative vector
between the two nuclear c.nR are introduced:

R., = Ty + Mety (4.4)

my1 + Mo

R = To — T (45)

Then the c.m. energies of the two nuclei can be written as.the@nergy of the total system
and the relative energy between the two nuclei

. 1 . 1. .2 1 .2
le’l"% + §m27°§ = §MRC.m. + QMR (46)

whereM = m; + ms is the total mass and = m;ms,/(m; + my) the relative mass. The
relative energy in its turn can be rewritten as the sum of &al@dnslational) motion and a
relative(orbital) rotation. For that we writR in terms of spherical components

+1
Ry= Y D} (6;) Ry (4.7)
=—1

The intrinsic component®,,, are by definition
Ry=R, ,Ryi1=R =0 (4.8)
i.e. R lies along the molecular'-axis. Then (4.7) reduces to
R,=D.y (0,)R (4.9)

Calculating the time derivative d® we get for the relative energy

1 . 1 . 1 . .
§MR2 = QMRQ + QMRQ(% + 6% sin 63)
1 . 1
= —puR*+ 2 T e’ (4.10)
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4.1 Geometrical Hamiltonian of Dinuclear Systems 116

where
uR? 0 0
Trel = 0 MRQ 0 (411)
0 0 O

Thus, the total classical energy, ommiting the c.m. enefghetotal system, is put in the
new form

1 . 1 1 1
T = §MR2 + §twl«7relwl + §tw1«71w1 + §tw2s72w2 (4.12)

The angular velocities of the constituent nuclgiare referred to the laboratory system. It
IS neccesary to express them in the molecular coordinaterayse. in terms of the angular
velocity of the molecular frame’ and those referred to the molecular frame As shown
in [1] the angular velocities)’ are expressed in terms of the time-derivative of the Euler
angles as follows

3
/ f— . —_
W) = ;%1(92,03) 7 (4.13)

where the transformation matrix is given by

—sinfycosf; sinfz; 0
Vii(02,05) = sin@ysinf; cosbs 0 (4.14)
cos b, 0 1

For the angular velocities of the constituent nuclei reférno the molecular frame, Uegaki
and Abe [2] obtained

% d
wi = le(%,%)% (4.15)

=1
wherey; with [ = 1, 2, 3 denote the Euler angles, 5; and~;, respectively.
The relation between the three angular velocities is giwen b

w; = R(v, Bi, vi)w' + w; (4.16)

whereR(«;, 5;, ;) denotes the transformation matrix which connects the ai#®anolec-
ular frame and the principal axes of each nucleus. Explcités given by

R(aia ﬁia 72) =

COS (; €OS [3; cos 7y; — sin q; sin 7; sin qy; cos (3; cos y; + cos ; siny;  — sin f; cos ;
— COs (; €oS B; siny; — sinq; cosy;  — sinqy cos (3; siny; + cos a;; cosy;  sin [3; sin 7;

cos «; cos [3; sin «; sin 3; cos (3;

(4.17)
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Inserting (4.16) in (4.12), the kinetic energy is expressed sum of three parts:
Tcl = Trot + Tint + TC (4-18)

where |
Trot — étw/Isw, (4.19)
is the total rotational energy of the interacting nuclei aghale. The inertia tensor is given
by
Is= T+ 'Rlay, B, ) T 1R(a, B, ) + "R(az, B2, 72) T2 R(w2, B2, 72)  (4.20)

Since we assume that the deformations of the constituetgirare axially symmetric, the
inertia tensorg7; » are diagonal in the coordinate frames of the principal axdbecon-
stituent nuclei

JA 0 0 JB 0 0
Ji = 0 Ja 0 |, Jo= 0 Jg O (4.21)
0o 0 J, 0 0

Substituting these last two expressions in (4.20), the corapts of the symmetric matri
are obtained

In = pR?4 Ja+ Jp+ (J, — Ja)cos® aysin® By + (J, — Jg) cos® ap sin®

Ly = (J,— Ja)sinay cosaysin® B + (Jp — Jp) sin ay cos ay sin® 3,

Lis = (Jy— Ja)cosagsin Gy cos B + (J, — Jp) cos ag sin (5 cos [y

Ly = pR>+ Ja+ Jp+ (J, — Ja)sin® aysin® B + (J, — Jg) sin® ap sin? 3

Iy = (Jy— Ja)sinagsin By cos By + (Jp, — Jpg) sin a sin G5 cos B2

Iis = Ja+Jp+ (Jo — Ja)cos® By + (J, — Jg) cos® 3 (4.22)
In case the nuclei have no non-axial deformations and smg@antum mechanics the ro-

tations around the symmetry axis are forbiddgn= I, = 0 and sincev; = —ay = a, the
above expressions are rewritting:

Iy = pR*+ Jo+ Jg — (Jasin? B + Jgsin® ;) cos® a
(—Jasin? B, + Jpsin? 3;) sin a cos a
Lz = —(Jasin By cos [y + Jpsin [y cos By) cos «

~

_

o
Il

Ly = pR?>+ Jo+ Jg — (Jasin? B + Jgsin® 3;) sin®
I3 = (—Jasin By cosfy + Jpsin [y cos fFs) sin a
]33 == JA SiIl2 61 + JB SiIl2 ﬁg (423)

Now introducing (4.13) in (4.19) we obtain

1 ..
Tt =5 > 9200, (4.24)

1<i,j<3
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where the elements of the symmetric teng8rare given in terms of the matrix elemerits

g% = I sin? 6y cos? Oy + Iyy sin® Oy sin? O3 + I35 cos? Oy
— 2115 sin? Oy sin 05 cos B3 — 215 sin O cos Oy cos O3 + 2153 sin O cos Oy sin O3
g;%t = ([ — I11) sin By sin O3 cos O3 + [15 sin Qg(sin2 05 — cos? 0s)
+ i3 cos Oy sin 03 + 193 cos 05 cos 05
g% = Is33c080y — I1358in 0y cos s + Iys sin O sin Oy
gt = Iy sin® 03 + Iy cos? O3 + 2115 sin 03 cos O
g5 = Iigsinfs + Iz cos by
g:ra%t = I3 (4.25)

The second term in (4.18) is the intrinsic kinetic enefgy

1 . 1
Tint = §MR2 + 2t ”‘7100/1, + L ”JQUJ" (4.26)

By substituing the angular velocities’, whose components are given in (4.15) we obtain
1 . 1 9 . - : :
Tt = a,uRz + ) [JA(af sin? B + B7) + Ja(cy cos By + 7%)2}
1 .
+ = [JB(QS sin? By 4+ 33) + Jy(dea cos By + 7%)2}
1 .
= 5#—32 (JA sin® 01 + Jpsin® B5)d% + = (JAﬁ1 + Jpf33) (4.27)

Thus
Tine = Z 9 ids (4.28)

1<z ,7<4

where the only non vanishing elements of the symmetric tegi¥dor the internal variables
are given by

g'lnlt = Jysin? By + Jpgsin? By

int

Gog = [
g = Ja
an = Jp (4.29)

The third term in (4.18) is the Coriolis coupling teffg
Tc ="' ("R(ou, 1, m)T1w + 'R, B, 12)Towh) (4.30)

We obtain upon substitution

1 -
=3 § 9;0:; (4.31)
1<:i<3
1<5<4
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whereg; are the subset of four variablés, R, 3,/,). The non-zero elements of the metric
tensorg;; are given by

g% = (Jasin B cos By — Jpsin (B cos By) cos asin B, cos O3
(Jasin 3y cos 31 + Jp sin B cos ) sin avsin 6 sin 03

+ (Jasin®B; — Jpsin® Bs) cos Oy
g% = Ja(sinasinfy cos f3 + cos a:sin  sin 63)
g& = Jp(—sin asin fy cos 5 + cos arsin O sin 3)
g5, = (—Jasin B cos B + Jgsin By cos ) cos asin b

— (Jasin fy cos By + Jpsin [y cos fBs) sin av cos b5
9% = Ja(—sinasinfs + cos o cos Os)
g5, = Jp(sinasinfs + cosacosb)
g5 = Jasin®p — Jpsin® B (4.32)

Next the classical kinetic energy must be quantized. Initnear coordinate the quan-
tized form reads [1]

~ h? 1 0 0
T —— ) — . — 4.33

The total %7 metricg;; tensor can be arranged in term of the sub-matr®sy™ andg©

rot gC
(9)i; = . (4.34)
C int
Y
whose determinat is given by
g = 4pPR*J4 sin? B, .J 5 sin? 3, (4.35)

The volume element is given by

dr = gda ... dg, = /gdr' (4.36)

Some times is more convenient to use as volume eleaénnstead. The total volume
element can be factored in volume elements for rotationdildorational variables

dr =dQ)-dV (4.37)

where
dQ = 2sinfydb;dO>dOsda (4.38)
dV = DdRdB,dSs (4.39)

with the weight functionD as

D = 1i*?R? J 4 sin (1 J sin Bs (4.40)
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We have to redefine the kinetic eneffjand the wave functiott of the original Schrodinger
equation via

= g24) (4.41)
so that
/ W Topdr = / & T pdr’

holds. The potential commutes wighbecause it does not contain differential operators. The
kinetic energy simplifies to

f = T + ‘7add (4.42)
where
= h? 0 0
T = — Y (¢ Y= 4.43
5 %j%(g e (4.43)
~ h? 3, 4, 10999 10(g ") 99 1 &g
Voas = 5 — {Z(g 54,00 5 04 OBa >“”§3qy8qu}
(4.44)

The quantum mechanical kinetic energy is divided into thegms, i.e.ﬁot, fvib andfc.

Tot IS given by that part of the sum (4.33) with; = 1 3, i.e. it is given in terms of the
differential operators of the anglés The quantum rotational energy in the three variables
0; was worked out in [1] and the result is

~ h2 ~
Toa== D, miliL] (4.45)

where the three components of the angular momentum opseatoreferred to the molecular
frame and are given by

~ , cosfs; 0O 0 0

L\ = —i < = 82 20 + sin O3 — 20, + cot 05 cos O3 803) (4.46)

~ _(sinfs 0O 0 0

I o= _ — #s— — cot O 0 4.47
2 ! <sm 02 801 +cos 3 802 coLva sin 3603) ( )

~ 0

L, = —i— 4.48
3 ZaQB ( )

where theu;; coefficients are given as

1
i1 = H22 WRE H12 ( )
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1

[y = W cos a(cot 31 + cot 33) (4.50)
1

fog = e cos a(cot 31 — cot [3y) (4.51)

DLl 1y 111y 1
Has = 4 Ja  pR?) sin? Jg  pR?) sin® B,

+ (cos 2a cot By cot By — 1) (4.52)

1
21 R?
Next, we add tcﬁot the kinetic energy associated withi.e. add the terms with= 4 and/or
j = 4. The elements of ! withi = 1 — 4, j = 4 are given by

(=14 cO8 05 + 194 sin 03/ sin 6)
(9 i<i<sjms = fh14 Sin 03 + fiz4 cOS O3
(114 cOS 03 — fi94 COS O3 sin 03) / sin Oy + f134
(97" )aa = paa (4.53)

where the coefficients are given by

1
T N cos a(cot 1 — cot (Bs) (4.54)
I .
loy = e sin a(cot 31 + cot o) (4.55)
1 1 1 1 1 1 1
B (NI I (I 4.56
S KJA " uR?) sin? 3, (JB * uRz) sin’ ﬁj (4.59)
B 1 1 n 1 1 N 1 N 1 1
fag = 4|\ Js pR?) sin?p Jg  pR?) sin® B,
1
_ e (cos 2accot By cot B + 1) (4.57)

Substituing the matrix elementg'); 4 ;—, into (4.33) we obtain the kinetic energy associ-

ated witha
., ) 0 ., 0 )
5 [T (i) + (g ) i) + (i) (‘%)}

~ h2
Trot(@) = _7 {
1<k<3

~ (4.58)
and thus the new;, is expressed in the compact form
~,  h? o o~
!/ !/

Ta=% > Ll (4.59)

1<i,j<4
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wherefﬁl is given by
~ o~ 0
=L =—i— 4.60
4 « Zaa ( )
Tub is given by that part of the sum (4.33) withj = 5 — 7, i.e. it is given in terms
of the differential operators of the internal variablég 3, 5). The strategy of calculating
T.ib consists in removing the weight functidn from the vibrational volume elemefi”
by multiplying the wave function by/D. Accordingly the vibrational kinetic energy is

transformed into

~ 8 0 1 = ~

Tio g )ij=——= =T+ V- 4.61
<i,j<

whereT i, andVaqq denote the modified vibrational kinetic energy and "addiéippotential”

originated fromD, and are given by

= h? 0 0

Tvp = —— (97 Dij5— (4.62)
2 s 0g; dq;
- 12 d(g~):; OD 82D 1 9D oD
D I e A
: 592,:57 Oq;  Dq; ! 0g,0q; 72D 9g; dg;
and the substition of the matrix elemefiigs<; ;<7 results in
E o mppe 1 1LN® (1 1\
oo T por2 T\ Uy T uR2) 032 " \Us " uR?) 032
2cos2a  O?
4.64
o (464
-~ h? 1 1 1 1 1 1
Vagg = —— || — 1 — 1
e g KJA " MRQ) (sin% " ) i (JB " MRQ) <sin252 " )
2 2
Bl Y (1 cot ﬁg] (4.65)
uR?

The coupling ternc, given by the sum (4.31) is also transformed into a newBandue
to the change of the volume element as follows

~ h? 0 0 0 0 1
Te = —— Dsinf i + —Dsinf i— | —
) 2 1<Zz<4 \/_Sm 0, (6% sin 029~ )ja% 6‘]] sinby(g” )j 8%) \/5

(4.66)
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where the elements ! are obtained as

( )z 5,j=1—-4 — 0
(97 D61 = (—sinacosfs — cosasinbs) /R sin 6,
(g7 Y62 = (sinasinfs — cosacosbs)/puR?
1
(g ez = [(sin a cos 03 + cos asin 3) cot O, + B sin 2 cot 52} JuR?
1
(9 ea = 5 sin 20 cot Fa/ 1R
(9771 = (sinacosfs — cosasinbs)/uR?sin 6,
(9772 = (—sinasinfy — cosacosbs)/uR?
1
(gD = [(— sin «v cos 03 + cos arsin 63) cot Oy — 3 sin 2« cot Bl} /uR?
1
(gD = —3 sin 2av cot 31 / 1 R (4.67)

Substituting these matrix elements in (4.66) results in

. 2 9 (0 10D 9 9 10D
T = _— -1 g p— S N -1 . - -
c > Z (97 )i, (aqj 2D aqj) +]§7 a9 )i (aqj 2D aqj)

8 ]. 8D _1 8 a 1 8D . a

B h? o 0 0 /E, . 0 ’E/

= W {zsma(—a—ﬁl—l—a—ﬁz) 1+ZCOS&<8—51+8—52)
7. 0 0 T

+ §sm2a <—cotﬁ2 90, +Cotﬁ1aﬁ )Ls

T 0 ,
+ ZS]HQQ(COtﬁQ a5, + cot (1 B)L4

| ~ 1
+ iLg‘ sin 2cv (Cot ﬁQai/Gl + cot (1 22) — 5 ¢os 2a cot 31 cot /82:| (4.68)

__Adding to the above expression of the Coriolis kinetic egehg i -mixing terms from
Trot
K-quantum number and a second one which does not:

Tt = To(K) + To(K, K') (4.69)

we obtain a new couplin@é which is divided into two terms, one which preserves the
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where

~ h? ‘ .
Te(K) = R [—(6220‘ + e %) cot, 3 cot B,

+ cot fo— (—e%a(/L\g — L, 1)+ (Ly -1, - 1)6’2i°‘>

b
b oot g2 (eQia(Zg YD+ 1)+ (D + I+ 1)6_%&)}
o5
(4.70)
Te(K, K') = i [emfl ((L’ + 1)+ 1) cot B — Qi)
’ 41 R? N 0

+ ((L/ + L/ + 1) cot 51 + 235 )) E’_Fe—ia

o ~ o~ 0
ZaL/ LI _LI t 2_
+ e +(( 3 4 — 1) cot By + 3ﬁ2)

+ ((L/ L/ B 1) cot By — 2%) L’em] (4.71)

with ', denotingL, + iL),

4.1.3 TheK-diagonal approximation.

The kinetical couplings obtained in 4.1.2 are quite congtécand even a coupled channel
numerical procedure is difficult to be implemented. The pgobcan be easier handled if we
start with that part of the Hamiltonian which conservesihguantum number, a case which
is appropriate for elongated systems, occuring in fissi@hfasion. In fact the-mixing
terms mT;ét with the coefficientsus, 114, 23 and uoy are relatively small, because they
contain the factoi /R* which is much smaller thari, s in the contact(scission) region.
It is then usefull to regroup the kinetic energy operatorcdiews,

A~

T = T +T. (4.72)
T = T+ T (4.73)
Wherefé was defined in (4.69). In what follows we neglect the effects ubﬁg.

The K-diagonal part of the rotational energy (4.59), can betgglitn a non-perturbed
part and a coupling term

Tty = Tiog + 0Ty (4.74)
where
h? h2 K2 B2 oot
70 — L’2 L’2 L’2 LI, + LI
rot 2,LLR2 ( ) 2,“33 2,“/44 2,“34 ( 34 4 3)
h - 3~ 1~
— L*— 2102 - _I7 4.75

R N N A A L (LI B Sy, A
8 [\Ja  pR?) sin?p Jp  pR?) sin?B, 0 !
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and
~ 2 o~ - ~ o~
0Tt = W(Lg — L)) cos 2accot By cot Bo(Ly — L) (4.76)
The vibrational operator is splitted as follows
7o _ h2182+1+1 82+1+1 0
vib ™ 2 | L OR? Ji  uR?) 932 Js  uR?) 052
i ! + - ! +1)+ ! + ! ! +1
8 JA /,LR2 Sin2 ﬁl JB ,MRQ sin2 ﬁg
(4.77)
~ o , 0? 1
0Tip = —2—R2(62w‘ + e~ ) <8ﬁl(’9ﬁ2 ~1 cot 3 cot ﬁg) (4.78)

The operatorf’ is preserving the{-quantum number and therefore the eigenstates are
of the rotation-vibration type [1]

¢ = Dy (0:)e” X (R, B1, B2) (4.79)

Once the rotational degrees of freedom are decoupled, waimesith the the internal vari-
ables R, (1, 52) which couple with each other through the kinetic energyrafoe 7" and
the interaction potential. In this basis the zeroth-ordéatronal-vibrational kinetic energy
reads

_ R 1 3 1 21 1 2
TLK,v) = — |—— = ([IT+1)—SK*— =) | - — [ =— + — 4+ =
(L, K,v) 24 {RQ R?(( -3 2" )} 8 (JA+JB+MR2)

RN 02 1(K+v)?-1
2 \Ja pR? 03 4 sin’pB

G 02 1(K-v)?—1
2 \Jp pR? 032 4  sin?®fB,

(4.80)
whereas the perturbed part is given by
ST(K) = — U {<€2m + 7 %) ( o — 1(K2 + 1) cot 3 cot ﬁg)
21R? 0p10p, 4
+ ifﬁl(e%a + e %) I}, cot By cot 52} (4.81)

4.1.4 The harmonic approximation

The complicate dynamics of the dinuclear system internalane can be solved by looking
for the normal modes around the equilibrium. The precessioentrifugal terms entering
inT%I, K,v)(second and third rows of eq.(4.80), which are produce&byandv— rota-
tional motion around the molecular axiswill be moved together with thg; kinetical terms
in separated Hamiltoniang;,



4.1 Geometrical Hamiltonian of Dinuclear Systems 126

As will be proved in 6.1.4, the potenti®dl (R, «, 51, 32), written earlier in (3.68), can
be expanded in terms of small deviations of the anglesrom the equilibrium position

(B1, B2) = (0,0):
V(R 0,1, 0) = V(E) + SR + SO:(R)E + Ca(R)fyfacos2a (4.82)

Thus the solution for eachi;-mode is obtained by considering the zeroth-order sub-
hamiltonians

~ h? 0? (K +v)2-1 1
0 2
= —— — + =Cy2f3 4.83
Br(2) 2JA(B) <6ﬁ1(2)2 4ﬁf(2) 5 “12)P12) ( )
where | | |
+

Jamy  Jam)  pR?

andsin 3? was approximated bg?. The solution of the corresponding eigenvalue problem
reads [1]

HglspKyngz(ﬁz) = EKunﬁi @Kunﬁi (ﬁz) (484)
reads
e + 3 +m0) ) 3
CKrwp(€) = Bt e 2 M0 By (—ng,, Lk + 9’ Ni37) (4.85)

(ng.!)?T(liey + 3)

where \? = j%gi, lky = 3 | K+v | —3and;Fi(..) is the confluent hypergeometric
function. The eigenvalues is given by

EKVnﬁi = (le + g + 271@) hu}gi, FLUJ@. = “% (486)

The perturbed part of thé-mode is derived from (4.81)

5?[——h—2{5 <82+11)+5 (5,2 —§1)}
e ouR? P\ 0108, 4BB) TP\ 08108, 4B
1
+ §Cl2<R)(5u’z/+2_'_51/’1/272)5162 (487)

4.1.5 Bound motion in the R-degree of freedom

In this the radial part}’(R, 0,0, 0), is expanded around the equilibrium positiBg;,, local-
ized on the bottom of the quasi-molecular pocket

1 8°V(R)

V(R) = V(Rmin) + 3 am

(R — Rumin)? + O((R — Rin)*) (4.88)
R=Rnin
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Naturally that theR-dependent stiffness coefficient§, C; andC;, must be also expanded
aroundRmin.
The centrifugal term in the radial part of the kinetic enefd)80), is evaluated an;n,
and thus the zeroth-ordét-mode sub-hamiltonian corresponds to a one dimensional har
monic oscillator
A= (R Ba)? 4.89
R—_@@"‘ﬁlﬁt( — Riin) (4.89)

wherekyr = 9°V (R)/OR|r=r,,, the corresponding eigenvalues and eigenvectors being

1 | k
E,, = hwg (nR + 5) , hwg, =h IR (4.90)
1 MW _pw p2 w
FonB) =\ G 7 7 € o (y/5r) 4.9

The total unperturbed energy is

1
E{(uanﬁlnHQ = V(Rmin) + hwR (nR + 5)

1 1 1/1 1
o — (1T +1) - =BK2+ 12+ 1) | -~ [ — + —
r [ (10040500 0) =3 (575,
(|K+V| K —v| 3

2

+ 1 + 27151) hu}gl + ( 9 + =+ 2”52) hu}gz(492)

* 2

4.1.6 Quasi-bound motion in theR-degree of freedom

In this case only thes; degrees of freedom are treated as bound and ther frequeareies
supposed to depend parametrically®nThe zeroth-order Hamiltonian of the quasi-bound
radial mode reads

. 1o 1 3 1 1
oo — 22 (41— 2K 22— =
R 24 [8R2 R2<< D=3 2" 2)}
K K— 3
+<| 2+V|+1+2nﬁl)hwﬁl(R)+<| 2V|+§+2nﬁ2)m52(R)
/11
V(R) — 2 [ — 4+ — 4.93
V(R) 8(JA+JB) (4.93)

Asymptotically he have

N Rre 1 3 . 1, 1\ 2K 1 (1 1

[ L I 1 SRS S5 B B (4=

R 2u[6R2 RQ((+) 2" T3 2) r +2M(JA+JB)]
(4.94)

The corresponding regular Coulomb-like solution is of therf (see App.A.2):

Fi(n, kR) ~ e*(kR)™ | Fy (0 + 1 —in, 20 4 2,2ikR) (4.95)
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where

20 1 1
R="L|E+—(—+— 4.96
hQ[ +8<JA+JB>} (4.96)

and/, generally non-integer number, reads

1
2 2

4.1.7 Symmetries of the Dinuclear System wave function
Boson Symmetry

When the clusters constituting the dinuclear system anatiickd the wave function should
be invariant under their mutual exchange. Exchanging time positions of two constiuent
nuclei, means to reverse the direction of relative veé&t@and thus, if the clusters are along
the 2’-axis, to reverse the direction of this axis. Since themsid configurations of two ar-
bitrary oriented objects remain unchanged after the exe&batwo nuclei, the orientation of
thex’-axis of the molecular frame is kept unchanged. The axesdaf#imsformed molecular
frame, i.e.(2/, —y’, —2') are obtained by rotations wittx + 6;, m — 0, 0). The internal vari-
ables will be tranformed according tay, 5;, as, f2) — (27 — ag, ™ — B2, 27 — a1, ™ — [1).
Since we introduced earlier the definitions= (a; —as)/2, 03 = (a1 +a2)/2, the exchange
operatorP,, acts as:

PlQ : (017827037Q7R7 ﬁlaﬁQ) - (7T+0177T - 827 —03,0[,R, ﬁlaﬁQ) (497)

Parity Transformation

The inversion(parity) operation reverses the intrinsicfigurations of two deformed nuclei
as well as the direction of the relative vectl;, the »’-axis andz’-axis of the molecular
frame. Accordingly the axes of the new molecular frafrey’, y', —=’) is obtained by the
rotations(w + 6, m — 02, 7). On the intrinsic coordinates, the inversion operator asts
(a1, By, e, B2) — (27 — a, (1, 27 — an, B2), wheres; remain unchanged because both the
molecularz’-axis and the principal axes are simultaneously reversed. Consequently the
inversion operatoP acts as

P : (017827037Q7R7 ﬁlaﬁQ) - (7T+0177T - 8277T - 037 —OZ,R, ﬁlaﬁQ) (498)

It should be noted that the definitidh = (a; + a2)/2 gives a result; — 27 — 63 with
2w — oy, whose angles are referred to the’-axis of the new molecular frame, whiteof
m — 03 in the above equation is referring to the afdaxis.

Symmetrized wave functions

Assuming axial symmetry for each deformed cluster tlaagle will not be affected by any
symmery transformation. Also, the density profile of eaalst@r will be invariant under
space inversion due to the positive parity of the groundaesfihe basis wave functiopf =
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DY (0:)e*x i (R, 1, B2) must be then invariant under action of the inversion opemati
upon a constituent nucleus,

Ji: (i, Bi) — (i + 1,7 — 3;) (4.99)

Consequently the symmetrization of the wave function isiedout by acting on it with the
operatorl + 71 + J> + 1 Jo:

=14+ T+ Fa+ T1J2)0° = Dy (0:)e* Xk (R, By, B2) (4.100)
with
V(R B1,02) = xx(R,B1,B2) + ™" xk(R, 7 — Bi,m — )
+ 2 E N (R — By, Bo) + € 2 E T\ ke (R, B, 7 — 32)(4.101)

To the above wave function we apply the boson symmetrizatrahparity transformation
and we use the properties of the Wigner functions, given ip.Af1

S(1+ Po)(1+ (~17P)¢?
= DL@e™ R (R, Bo) + (<K (R — oy — )] +
+ (=D)PEDy g

X

e _k(R, Br, Ba) + (—1)PKe g (R, — By — B1)] (4.102)

It should also be noted that due to the periodicity with respeprecessional motions of
the constituents nucléik’ + v)/2 = m, m being an integer. A remarkable relation is then
obtained:

X (R,m = Bi,m = Ba) = (=1)" Xk (R, 1, B2) (4.103)
and eq.(4.102) can be further simplified

S(1+ P)3(1+ (~1)P)8?
= Dfi@) (R, o, )+ (~17Fe i (R, B, )] +
+ (=)D
< [e7" Xk (R, B, B2) + (= 1)P " X-k (R, B, B1)] (4.104)

In particular forK =0
oMK =0,—v) = (-1)PHeMNK =0,v) (4.105)

due to the parity transformation. Thus= even corresponds to positive-parity states and
I = odd to the negative-parity states.
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1 2

Figure 4.1: lllustration of the main variables of a three cluster molecT he light cluster is plotted
as spherical. In general it will be deformed as the heavyaiucl

4.2 Geometrical Hamiltonian of Trinuclear Systems

4.2.1 Trinuclear Quasimolecules with Deformed Clusters

In [3] a phenomenological, geometrical model for the systérthree clusters, two heavy
ones and a light in the middle, was proposed. The model wascted to butterfly and
belly-dancer modes only and théBe cluster was assumed to be spherical. However, in
general the light cluster can be deformed and its effect teistudied. Also the inclusion
of 3 and~ vibrations must be considered. Because the light clustf8]iwas considered
to be spherical, the stiffness of the butterfly motion is riyagdetermined by the monopole
part of the Coulomb repulsion between the heavy fragmentdridhe case when the light
fragment is deformed, this is no longer true and one has trmégte explicitely the change
of the nuclear and Coulomb interaction between the lightregaly clusters as a function of
the inclination angle. In Ref. [4] the nuclear potential iasen into account, including also
multipoles higher than the monopole and quadrupole ones.

The model proposed in Ref.[3] is an extension of Ref. [5] enésd for two clusters. The
molecule exhibits butterfly and belly-dancer modésand-~-vibrations of the two clusters.
This picture can be extended straightforwardly to threstelts using the formulas as given
in Ref. [5]. Itis especially easy for the case when the twodbigters (for example th&Sr
and!4°Ba) are connected via a smaller spherical nucléiBg). The situation is illustrated
in Fig. 4.1, where the main dynamical variables, with a sjghécluster in the middle, are
indicated.

In Fig.4.2 possible vibrational modes are indicated, winenlight cluster is deformed.
The first case corresponds to the above mentioned butteritie nvehereas the second one
is the antibutterfly mode. As will be seen bellow, for the btfty motion the dominant
contribution comes from the movement of the center of maases contrary to the two
cluster case, deformations play a minor role, except in dixhre length of the axis in Fig.
4.1 and 4.2.

In order to keep the problem tractable, the main assumpéionghat the light cluster is
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ZBN
N

Figure 4.2: In the upper half the butterfly mode is plotted. The lower Ipasents a more com-
plex case which corresponds to the anti butterfly mode inwlertuclear molecule for the limit of
vanishing mass of the light cluster.
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Figure 4.3: The potential of the light cluster 3 in the field of the two heavragments along the
molecularz axis, for three fixed tip distancesi= 2 (solid lines), 3 (dashed line), 4 (dotted line) FM.
The trinuclear molecule comprisé$Sr + °Be + 46Ba.

sandwiched in-between the heavy nuclei and the inclinatragies of the clusters are small
with respect to the molecular (fissiontaxis, connecting both heavy clusters. In such alinear
chain configuration the total potential of the lighter ckrdtas an absolute minimum on the
axis joining the three fragments. As can be seen in Fig.4r3a given distancé between
the tips of the two heavier fragments, there is a point on 88dn axis:z, where the forces
exerted by the heavy fragment 1 on the light cluster are d¢add®y the forces exerted by
the heavy fragment 2. This is the so-called electro-nudeddle point [6]. Note that the
result of Fig.4.3 was obtained using a strong nuclear repferce, between the fragments
in order to avoid their mutual overlap.

The general formalism

The motion of the three clusters can be divided into the imtatof the individual clusters
plus the motion of their center of masses with respect to ettuér. The part of the Hamil-
tonian which describes the individual rotations is giverha previous section and can be
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also read off from Egs. (49) and (50) of Ref. [5]. The part vihathanges originates from
the motion of the center of masses. Therefore, the disaussiocentrates first on the mo-
tion of the three center of masses and is independent ofaenirsg either of the two modes
described in Fig. 4.2.

In order to separate the center-of-mass motion, the follgwbordinates are introduced

T = T2 —T1
_ TuTi+ MeTa s (4.106)
my + my
wherem; = Aym, A, is the number of nucleons of cluster foandm the nucleon mass.
The first coordinater() describes the relative distance of the two heavy fragmehite the
second oneg) the distance of the third, lightest cluster to the centanass of the first two.
The kinetic energy, excluding the motion of the total ceffanass, acquires the form

1 . 1 .9 1 1 1
T= 5#127“2 + 5#(12)35 + étw1j1w1 + éthJQwQ + §tw3~73w3 (4.107)
wherejiy = 5222 and jio)s = % The first term in (4.107) describes the

kinetic energy of the two heavy clusters with respect to esblr and the second term the
kinetic energy of the third cluster with respect to a mass + m,) at the center of mass
of the first two clusters. The mass factors describe the emtlutass for each case. The
term proportional ta-?> has the same form as for the two cluster case and thus is ylread
included in the considerations of the previous section. [&kethree terms in eq.(4.107) are
describing the rotational motion of the three clusters \aitlgular velocitiesv, » 3, referred

to the laboratory frame. The inertia tensgrs are defined in the intrinsic frame such that
in the absence of and~ vibrations the only non-vanishing components are the fivst t
diagonal terms(J ;)11 = (J )22 = J;, the quantum rotation around the symmetry axis of
any of the two heavier fragments being discarded. Whemd~ vibrations are included
there will be a contribution t0.7 ;)33 given by ay dependence [1].

The second term in Eq. (4.107) needs more attention. In Fig.the three center of
masses are plotted and the relevant coordinates are iedicBe projection of the vectgr
onto the relative distance vector, denoted<byand its perpendicular component along the
x-axis §,) are given by

& = -
z — (Al n AQ)T r13COS¢€
£ = rizsine (4.108)

wherer3 is the distance between the cluster no. 1 and 3aisdthe angle between the
axis connecting cluster 1 and 3 to the vector Note, that this angle is not necessarily
the same as the inclination angle of the intrinsiaxis of cluster no. 1 to the vectat.
Because the molecular plane is defined by the three centeras$en of the clusters the
spherical components.; are the same up to a sign. The change in sign in the definition of
the spherical components, due to convenience, comparbd testial definition [7] is shown
bellow. Theg& contribution of the kinetic energy is obtained by rotatingpithe molecular
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Figure 4.4: Main variables for the discussion of the motion of the clssteith respect to each other.
Only the centers of mass of the nuclei are plotted.
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Figure 4.5: In case the third cluster is deformed, the alignment of ayeaeleus with the light one
is not perfect. The relations of the angles are illustratetthis figure.

system and then substituting the expressions for the sah@omponents of the vectgr
As spherical components we use the expression

1
§r1 = iﬁ(fm +&,)
S = & (4.109)

where the definition of., differs from the usual one [7] for convenience. In the molacu
frame the vectok is defined to lie in the molecular plane given by the moleculaixis,
parallel to the vector. Therefore, thg, component vanishes and the relation of the cartesian
to the spherical components is such that §he components are in their absolute value
identical and are given b#%gx.

In Fig. 4.5 the relation of the angle; to ; andy, can be read off with the supposition
that the three clusters are connected. Assuming smallgrgkeresult is

) 1 ) ) 1
p3 A sin g = Q—R?,(R2 sin g — Ry sin pq) & 2—RB(Rzg02 — Ryp1) (4.110)
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In the above formula we suppose that the heavy cluster 2 laagex Ishift on the:-direction
than the lighter one. In principle the two anglesandy, could be treated now as indepen-
dent withys constrained by Eq. (4.110). However, the problem would geicomplicated,
implying coupling terms between the andy, motion. Supposing that the cluster in the
middle is small, the relation between andy, should not differ much from the case when
the small cluster is spherical [3]. We use, therefore, timeesgelationp, ~ ﬁﬁﬁi?% as for

a spherical cluster and substitute it into Eq. (4.110) tesyin (o, = ¢)

1Ry — R1
2R2+R3

g R (4.111)

One possibility to relax this constraint is to expand theggahmotion around the point
where condition (4.111) holds and diagonalizes the Hamgtoin this basis.

For the case of connected clusters the distance betweeer adnthasses of the third
cluster and nucleus no.R;3, can be approximated ly?; + R3) in the linear, unperturbed
configuration. In the perturbed case, when the moleculessgasbe linear;,; is modified
by the amount

1 RyRs (Ri+Ry+2R3\ ,
oris ~ —— 4.112
s 8R1+R3( Ry + Ry ) © ( )
providede is small, Similarly we get the variation of;
1 RyR; [ Ri+ Ry+2R;\° ,
Sron A% —— 4.113
" 8R2+R3( Ry + Rs ) c ( )

At equilibrium (=0), the distance, between the center of masses of the two heavy
clusters is given byR, = R; + Ry + 2R3. Whene # 0, and taking into account terms up to
second order ia, r changes to

1R + R,
2R, + Ry

Therefore, an increase i) changes:, 3 andry; with a correction in the moment of
inertia of the order of? and higher. At their turn, the componegtsandé, acquire the form

r= (Rl + 2R3 + RQ) (1 ) + (57’13 + (57’23 (4114)

, ~ |——— (R + 2R3+ R Ri+R
3 [(A1+A2)( 1 3 2) — (I 3)}
Ay (R + Ry)
+ A1+A25T12_5T13+ 5 I3
- £0+5£z
§o ~ (Ri+ R3)e+66 . (4.115)

wherej¢, anddé, give the contributions due to changes in the relative destarfi the clusters
1to3and 2to 3, i.e. they describe a mode of the stretchingtidns. Again, for simplicity
we assume that the relative vibrations are along the maecuéxis, i.e. 6¢, = 0. If
this assumption is not made, there will be contributionshef typed¢,d¢. in the kinetic
energy. One has then to construct the basis first, where ¢higliog term is absent, and
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afterwards to diagonalize the complete Hamiltonian inblaisis. Note that the model is quite
crude and other coupling terms, like rotation- vibratioteractions, have been neglected.
Consequently, the spectrum obtained in the model will best éipproximation and the
assumptions made above are justified only in this context.

In order to keep the procedure manageable, we assume thaiglez is small, i.e. the
light, third cluster is not far away from the axis connectthg two heavy clusters. Fur-
thermore, we assume that the first cluster, supposed to bighitest one of the two heavy
clusters, touches the third one and the third cluster taitiesecond one. The situation is
illustrated in Fig. 4.5 with a certain exaggeration as comee to the distance of the third
cluster to the axisr() connecting the heavy clusters. These assumptions exthadanti
butterfly mode for which the relation of the angles changee procedure for that mode,
however, is completely analogous.

Neglecting tems of the ordé?(=?) in Eq.(4.115) we obtain

535 = (Rl + R3)€
1 R1 + Rg AlRQ — AgRl 62

. = bt 4.116
: §0+2R2+R3 A+ Ay ( )
where¢, is the value of th&-coordinate in the linear chain configuration
A —A
¢ = 2(R2 + R3) 1(R1 + R3) 4.117)

A+ Ay

The time derivative of!? is determined using the procedure outlined in Ref. [1]. Afte
some algebra, which implies also the calculation of Wigheunctions time derivatives we
arrive at

(€0 € = 3 (1)t x (By+ B+ (R + ) + (Ru + Reus?

+ 28 (R1 + R3)(ewh — ewjwy) . (4.118)

The radial mode along thez axis describes the motion of the two heavy clusters in a
common direction and of the light cluster in the oppositection (see Ref. [3]). The other
radial mode comes from changesrirand describes a vibration of the two heavy clusters
with respect to each other while the small cluster does notem@hese types of vibrations
will be included in the complete Hamiltonian. Insertingl(#5) into the kinetic energy for
the& motion, usingd¢é,, = 0, we obtain

1 .
Te = SHa2)3 {(R1 + Rs)*¢* + & (w)® + wy?) + (R1 + Rs)?e"w}”
+  2&(R;y + R3)(éwy — ewjwy)} , (4.119)

with w;. being the angular velocity around th&h molecular axis{ = z, 2 = y and3 = z)
and¢ is a shorthand notation f@,. From here on, when we refer to the total contribution,
including the rotational one, we continue to denote igtbgnd the pure motion along the
axis is denoted by.
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The kinetic energy of the and ¢ stretching vibrations along the molecularaxis is
described by
1, 1 "
T, = 5#127“ + 5#(12)35 ) (4.120)
where the last term comes from Eq. (4.119). The coordinatasd ¢ are related to the
relative distances;s = z3 — z; andry; = 29 — z3 via

Z9 zZ3 = 7ml+m2r+§
23— 21 = M £ . (4.121)
my + Mo
The corresponding potential is given by
C C
V. = %( 3—T1— 7"13,0)2 + %(TQ — T3 — 7"23,0)2 (4.122)

wherer;; o andrys o are the equilibrium positions; o = (R, + Rs) andrays g = (R + R3)
respectively. Note that in our picture cluster no. 1 is toléfeand no. 2 to the right and that
the coordinates refer to the distance along the intermtdeenis.

Up to know we considered theand theg motion only. The contributions coming from
the deformation of the individual clusters can be read a@ffrfrRef. [5] and from there the
general kinetic energy can be constructed.

Bellow two different cases are considered. In the first omedbntributions ofs and
~ vibrations are excluded and in the second one they are iedlubh both cases the static
deformation in the ground state is assumed to be prolate. r€ktriction is governed by the
necessity to keep the problem solvable otherwise the coatpli form of the Hamiltonian
would prevent an analytical solution. In case a triaxiallaus is present the procedure
outlined is strictly speaking not valid, but an approximatiof the triaxial nucleus by an
axial symmetric would do the job.

With the assumption made above, the total kinetic energivendoy

1 1 1
T = —@11((4}12 + wéQ) + 5@33&)&2 — @136&)1&)& + 5@55‘52 + @2;6(4)&

2
+ %Mu’f'j + %M(u):&éz (4.123)
with
On ~ Ji+Jo+ J3+ M(12)3f§ + 12 Rj
O43 =~ (J1 + Jg% + Jgﬁi_—jﬁ%ﬁ; + paz)3 (R + 33)2) g?
O3 ~ S+ J, Egi :[ Zi; + J3 2(3%12;%3)) + pa2)3éo(R + R3)
0. = 4O

O = O3 (4.124)
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For nearly symmetric heavy clusters, not too deformed anthalls/alue of s the
coupling is small compared to the diagonal terms of the mamoemertia and thus can be
neglected, as for the other contributions. Also the defdiomadependent part i®,; can
be neglected with respect to the last term, as was done aRefin[5]. However, for very
asymmetric heavy clusters we cannot neglect any more thteilwation of ©,., except for
small —"2—. In this case, one has to diagonalize this term in the basis®yi. = 0, which
is in the same spirit as for the coupling terms in the radibrations. The basis will be
discussed further below.
For the potential we assume a quadratic behavioayimandg, i.e.
c. , C, 2

Vo= =
5 ToT

(5 &), (4.125)

wherer = (r — ro) with ry being the equilibrium position of the nuclear molecule. The
parameterg’. andC, are related t@';; andCs; via

C _ (m%C’lg -+ m%C’gg)
" (my + my)?
Ce = Cis+Cay . (4.126)

Other crossing terms of the typé€, » and¢ also appear, which vanish for a symmetric dinu-
clear sub-system, formed from clusters 1 and 2. We assurh@tganeral the microscopic
interaction is such that also for non-symmetric clusteesdbupling terms can be canceled
or made small, which is obviously a simplification.

In what follows, we quantize the Hamiltonian with the kire¢inergy given in (4.123)
taking into account the contribution of the coupling of thandw,; motion, whose origin
is the Coriolis force. The quantization procedure was dyeaxplained in 4.1. Then, the
Hamiltonian composed by the kinetic energy (4.123) and titergial (4.125) is quantized
in this manner, resulting for the kinetic energy in

~ h2( 72 — j/2) K2 j§2 B K2 8_2 i
= + 615\ 2 O15 0e? + 4e?
200 -3 26. - g2 26 - gh)

B o B9 O V@? . (h a)}
- I — nl 4.127
2#12 6?2 2[1(12)3 (952 (@11@ @ ) Oe ( )

In the following discussion we will skip the term in the patteesis{ .} which has to be

treated as a perturbative interaction and the correctivesdpy 22— e , which is small com-
pared to one for the molecular systems studied in the premei In very assymmetric
systems, however, both terms have to be included and didgetan the basis which will
be constructed in what follows. The terms which do not congadlerivative come from the
additional potential of Eq. (4.63)

Neglecting the term with the parenthes$is} in Eq. (4.127) and corrections of the order

of 5 Oy s andg2 13 , the corresponding static Schrodinger equation can bedavith the ansatz

¢ = D} (D) XK. (€)gn, (1) (4.128)
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were D! (1) is the WignerD-matrix, g,,, () is the one dimensional harmonic oscillator for
the relative motion ang x ,,. is the solution of the differential equation

oo ”
20,02 O, 47 2¢2 2

+ (2(};11 [I(I+1) — K?] + hw,(n, + %) + hwe (e + %) — E)] $=0 (4.129)

where! is the total spin K its projection to the molecular axis, iw, = h M(Clg), hwe =

M?ffm andF the total energy of the state

This equation can be solved with the solution given by (sse Ref. [1])

1
{Alk+%r(lK+§+n€)}2 s 3
ne(€) = gx e 22" B (—ng, g + =3 Ae . (4.130
XK, () (ngl)%F(lKJr%) 1 1( K 5 ) ( )

where)? = &L= [ =| K | —1 and, F}(...) is the confluent hypergeometric function.
The total energy is given by

2

F =
201,

[I(I+1)— K7 +th(nr+%)+hwe(| K| —i—2n€—|—g) (4.131)

andiw, = h\/g:Z .

When there are two identical clusters the wavefunction tikésbe symmetrized with
respect the interchange of cluster no. 1 and 2. For the ligktar the variables transform in
the same way as indicated by the second cluster except fohtdrege of indices fror to 3.
With respect to the variablethe transformation is — —«.

The extension tg and-y vibrations is straightforward. Including also the rotateround
the intrinsicz axis of axial symmetric nuclei, given by, (k = 1,2,3), leads to a very
complicated form. Additionally we have to assume that thusters are prolately deformed.
Otherwise a complex coupling between the rotations aroned,ty andz will appear. The
(3 and~ vibrational variables of th&’th cluster are defined by

Bk = CL’S — Bok

m = a5 (4.132)

wherea’ anda} are the components of the quadrupole deformation variabtaeok'th
cluster with respect to the principal axes. Using Eq. (5Ghefsecond paper in Ref. [5] for
the moments of inertia plus the corrections discussedduntlp, the Hamiltonian acquires
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the form
_ hz(_fz__fg) . hzjéz B K2 (5’_2_L)
2001 — 2)  2(0. — gh)er  2(0, — gir) \0e*  4e?

_hly (k0 N h 0 N h o
@582 1 8@1 ) 8@2 ) 8@;;,
h? 0? 0? 0?
T20.2 <a<1>% T T acpg)
h? 0? 0? 0?
- + +
@562 <8(I>18(I)2 8@18@3 8(1328@3)
n* 02 n* 0 n: 02
2B, 9?3 2B, 9?32 2B3 0?32
h? h? h?
" 16By?2  16Bsn2  16Bgn2
R o2 n* o2 n* 02
4B, 2 4B, %12 AB; 0212
R o2 n: o 9? n: o2
" 16By2 0®2  16Byn2 092 16Bsn?2 092
n* 92 n: 02
_2M(12) or? 2p(12)3 3—52
where the variables, andy;, (k = 1, 2, 3) describe the? and~ degree of freedom as defined

in Ref. [1].
The complete potential is given by

_052 C,_ Ce 9
vV = 2€—|—27’—|—2(£ &o)

+Coun} + Coons + Coy13
Cﬁl 22 052 22 Cﬁs
5 By + 5 By + 9

(4.133)

+

3 (4.134)
and the determinantis
g = 82°0L,0IB/BBimnynie” (4.135)

where©,, ~ ©,; was used. The factal*B?BiB3 = (2B;)(2B,)(2Bs) B;B,Bs; comes
from the3 and~ part of the metric tensay,,, .

Neglecting, as in the case witho@tand~ vibrations,corrections of the order %%
the static Schrodinger equation can be solved with thetansa

¢(1917 1927 1937 E,T, Bla BQ) /837 s 72, 773) - ei(K1¢1+K2¢2+K3¢3)DﬁK(ﬁ)Xf(,na(g)gmﬂ (77)
gng (g)gnﬁl (/gl)gnﬁ2 (/62)97153 (ﬁg)XKlynnl (nl)XK2,n7;2 (772)XK27717;2 (772) (4136)

where K, is the eigenvalue of the operat@% and K stands fol K — K, — K, — K3 |.
To obtain the final form of the wave function, we have to apply transformations of the
coordinate symmetries for a molecule composed of prolatéenu
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The transformations of the molecular frame consists of feratorsk; ,,, andR;m, the
m refers to the molecular frame, and their action is given by

Rl,m(xa Y, Z) = (l’, —-Y, _Z)
RQ,m(xayaz) = (_:Ea _yaz)
(4.137)

These operators act on the Euler angledk = 1,2, 3), the other coordinates;, ¢;, ®;

(: = 1,2,3) and onr and&. The result is given in Table 4.1. The angles ¢; and ®;
correspond to the Euler angles describing the rotation efnilncleus from the molecular
frame to the principal axis of theth cluster.

Because the three clusters are supposed to lie in a planexghesg; are put to zero.
Also a small butterfly angle is assumed and all anglegre proportional to it. A coordinate
symmetry transformation consists of those actions wheratigelsy; andy; are changed at
most by a sign. Inspecting Table 4.1, the only combinatidiesvad areR; le s andRzpl
whose action is given in Table 4.2.

These operators have to be applied to the solution

¢(1917 1927 1937 E,T, Bla BQ) 637 s 72, 773) - eZ(K1¢1+K2¢2+K3¢3)D]I\/IK(ﬁ)Xang(g)gmﬂ (77)
xgng (g)gnﬁl (/Gl)gnﬁ2 (/62)gnﬁ3 (ﬁg)XKlannl (nl)XK2an7]2 (nQ)XK2an7]2 (772) (4138)

of the Schrodinger equation. The action]éipi (z = 1,2,3) on this state changes; to
®; + 7 and); to —n;, i.e. it acts only ore’™* andx, ., (1:). The resultis a phage-1)":
implying only even values oK.

The action of the operatdt, ,,, R, ,, is more involved. The result is

(b(,l?h ,1921937 E,T, 517 527 537 M, 12, 773) =
N {D{W*K(ﬁ)f((b17 ®27 ®3) f ( 1)I KDiJ* K(ﬁ)f(_q)17 _q)Qa _®3)}
XX K e (&) Iy (F) e (€) s, (B1) I, (B2) Gns, (B3) XKy mmy (1) X ez gy (12) XKz iy (712)

(4.139)
where\ is a normalization factor and
f(q)l (I)2 (I)?;) — ei(Kl‘lerKQ‘i’erKs‘i’s)_|_e*i(K1‘1>1+K2‘1’2*K3‘1’3)
ei(Kld)l—Kgcbg—KgCDg)+e—i(K1<I>1—K2<I>2+K3<I>3) ) (4140)
The quantum numbers acquire the possible values
K, = 0,2,4,..
K = 0,1,2,3,4, ...
L = K,K+1,K+2,...
Ny, Mgy Ne, N,y My, = 0,1,2,3,4, ... . (4.141)
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variable| Ry, | R3,, | Rip | Ry,

% N+ a1 a1 a1
) T — Iy ) Uy
U3 —vs | Y3+ | U3 U3
Xi —Xi | XetT Xi Xi

Pi T — ¥ Pi i+ Pi
&i &i & & &
i i i i i

r r r T r

§ § § § §

Table 4.1: The action of the basic coordinate symmetry operators ondhective variables

variable oA Dy U3 Xi Pi ; S| m|T|¢&
Rl,mRLpi h+m|m—dy | =03 | —xi | —@i| —Pi |&|m|7T|¢§
RQ,pi ¥ Uy U3 Xi wi | Pit5 | &G m|T|§

Table 4.2: The action of the allowed combinations of symmetry opesatdrich satisfy the condition
that after their applicatiol; is still zero andp; is maintained near zero.

The energy is

h2
E = 5o +1) = K*] + hoo(| K = Ki = K> = K3 | +2n. 4 1)
11
1 1 1
+hwg, (ng, + 5) + wpg, (ng, + 5) + hwp, (g, + 5)

1 1
+hw771(§ | Ky | +2n771 + 1) + hwnz(é | K | +2nn2 + 1)

1 1 1
Fhen, (5 | Ky | 420, + 1) 4 hwp(n, + 5) + hog(ne +5) - (4.142)

The frequencies are

Chye
By’

hw. = hy /S, hw,, =h hwg, = hy ) 22k

- Bp,

hwp = Ty [-C— ) hwe = By )-S5 (4.143)
H(12) H(12)3
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Before we apply the outlined procedure to the c&88s+ '°Be + “5Be, ''">Ru + °Be
+ B9Ru and!®Mo + °Be + !31Te, which are all non-symmetric systems, the derivation of
the potential parameters is outlined. The ones relatedet@ ind~ vibrations are obtained
through the spectrum of the individual clusters.

Derivation of relative potentials

We derive now the expressions for the stiffness coefficiappearing in Eq.(4.125). For that
we need to calculate the interactions between the nucleposing the trinuclear molecule.
Since the interaction potential between the clusters shoepend not only on their recip-
rocal distances but also on orientations we choose agaihotnigle folding-model potential
written in (3.49).

The ground state one-body nuclear densities of the fragrarttaken as Fermi distri-
butions in the intrinsic frame

1+ exp% (7’ — Ry (1 + Z BrYao(0, O)))] ) (4.144)
A

The constang, is fixed by normalizing the proton and neutron density toAhoton andV
neutron numbers, respectively. This condition ensuresahene conservation. The radius
R, and diffusivity parameters were taken from liquid drop miaticulations [8] for the
heavy fragments, whereas for the light cluster we conslueptescription?, = 1.04 - A§/3
for the radius and: = 0.35 for the diffusivity. As static deformationgj,, we considered
guadrupole, octupole and hexadecupole deformations.

In the region of nuclear-density overlap we introduce a phenological repulsive po-
tential which originates from the compression effects efdalierlapping density as explained

in 3.3.3

p(r) = po

Viep(R) = Vp/d'rl/dTQ p1(r1)pa(r2)d(s) (4.145)

where the tildes on the densities signify a distribution led same shape as (4.144) but
possessing an almost sharp surface. The strength of theessign terny,, was determined
from the nuclear equation of state [1] by requiring for tataérlap of two nuclei a double
normal density of nuclear matter. For a given dinuclear gstiesn (jign: + Aneavy) We take
the value of the nuclear compression modulsccording to the receipt proposed in [9],
and computé/, from the equation giving the binding energy loss for totaddap [10], i.e.
R=0:

Vmay (0) + Vrep(O) ~ éKAlight (4.146)

The double orientation of the double folded potential is pated by using (3.68).

In [4] it was assumed that when the nuclear molecule is bentabiprocal distances be-
tween the heavy fragments and the light cluster are predeiree the trinuclear molecule is
allowed to perform only vibrations which result in the inase of the angle between the two
valence bonds. In this way possible bond stretching vibnativere excluded. To overcome
this restriction we take into account such a degree of freedid bydr; 3.3 we denote the
change in the distance between clusters 1(2) and 3. The ggooi¢he system, presented
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in Fig.4.5 for a deformed light cluster, provides the valoéthese quantities as a function
of the deflection angleg; - 5 :

1 RiRs )
) = ————= (1 +

1 RyRy )
5 o B () — 4.147

On the other hand, from the inspection of Fig.4.5, the imttoa between the deformed light
cluster 3 and the heavier deformed nucleus 1, reads :

Vir)= Y VI (R + Ry + 6ris)dyb (o1 — £)d% (e + 3) (4.148)

A1,A2,A3

Since we made earlier the approximatipn =~ &, the variation of the valence bond length
(4.147) reads

1 RiRs (Ri+Ry+2R;\” ,
oriy = —¢ 4.149
s 8R1+R3< Ry + Ry ) © ( )
Expanding the potential (4.148) with respect to the smajlenwe have that
1
V(ri) = V(R + Rs) + 503352 (4.150)
where
013 - _ - RO ?
c 4 \ Ry + Rs
R1R3 6‘/;\02 gS(Tlg) 1 000 )
X 122 — =X (A2 + 1)V, r 4.151
)\Zi (R2+R3 87"13 2 2( 2 ) >‘1)\2)\3( 13) r13:R1+R3( )

Using similar arguments we get the expression for the sisfrof the butterfly mode, coming
from the interaction between clusters 2 and 3

023 — _1 RO ?
© 4 \ Ry + R3

Z ( RyRs av}gggg\g (r23)
R2 -+ Rg 8r23

X

1
= 5 + VIR, (rgg)) (4.152)

i rog=Ra2+R3

The last contribution to the stiffness coefficient of thetérity mode comes from the inter-
action of the heavier fragments 1 and 2. Using again the gegrogFig.4.5 we write in
multipolar form the interaction between these nuclei

Vir)= ) Vi (Bo+ 0r)da (1), (e2) (4.153)
A1,A2,A3
According to egs.(4.112-4.114) the shift in the interfragindistance reads
1
b= —ip Bt s s (4.154)

2Ry + Ry
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Figure 4.6: The potential between the heavy fragm&tiBa and'°Be (solid line) and betweel¥ Sr
and'Be (dashed line).

Consequently expanding in Taylor series this potentightgoobtain the stiffness coefficient

Ri—R R — Ro)(R1 + R
= - Z <)\1 )\14—172 )\2()\2+1)( ! 2)( ! 3)

2
)\1)\2)\3 R + Rs (R2 + R3)
Ri+Rs\ 000
— Xa(\ 1 V, R
3( 3+ )R2+R3> )\1)\2)\3( 0)
avO 00 R
_ R Z R + R3 RORg(Rle, + RoR3 + 2R1R2) >\1>\2>\3( 0) (4.155)
Moo, 2t R3 4(R1 + R3)(R2 + R3)? or

In order to obtain the stiffness coefficients of the bondcstireg vibrations”;; andCss,
we expand the potentiald(r,3) andV'(rs3) , up to second power afr;3 anddrys. Such
an expansion is possible in view of the relative minimum ie gotential with respect to
the inter-cluster distance. As an example we give in Fig. tAgpotential between the
heavy cluster1(2) and the light cluster 3. After some algebe obtain for the dinuclear
subensemble (13)

1
V(ri3) = V(R + R3) + Ai3dris + 50135r%3 (4.156)
where
>\2<)\2 + 1) R1R3 000 8V/\0§ %\ (7”13)
Az = V, (ry) + —1o2ns o (4.157)
)\1§>\3 2 Rl + R aas arl?’ ris=Ri1+R3
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Ao(ha + D)(BAZ+3N +1) (Ri+Rs\° . 500
Ci3 = 1%
1,172,713

Rl + R3 8V>\01220>\3 (T13) + 82‘/)?1220)\3 (T13>) (4158)
Rl R3 87"13 87%3 ri3=R1+R3

+ XA +1)

Since the linear term itir;3 has only the effect to shift the origin of the harmonic ostdr,

the stiffness coefficient of the bond-stretching vibrasias specified by’3;. In the same
manner we derive the coefficieit; and next using the relations from eq.(4.126) we derive
the stiffness coefficients of theand&-modes.

Applications to °Be-like molecules

The model developed above is applied next to the systé8rs+ °Be + '*6Ba, ''?Ru +
10Be + 139Sn and'®®Mo + °Be + 3*Te. For the computation of the numbers we usé =
938 MeV for the nuclear masa¢ = 197.33 MeV fni, 1.2 A'/3 for the spherical equivalent
radius of a heavy cluster ard3 A'/? for the light one. In order to obtai?ﬁf we set it equal

to the energy of the| state of the individual clusters.

In case we consider a spherical nucleus, #@;) value is taken as the vibrational
energy. This has to be used with caution because for a roto;trstate is a rotational
one. In a nuclear molecule the rotation of individual clusie constrained due to the link
to other clusters. Its rotation is converted into the bélftanotion. This is not the case
for a vibrational state. We assume a deform&Be where the deformation isot taken
from Ref.[12] because the assumptions used there are nerlaadjd for light deformed
nuclei. We rather use th&l/ (3) model of the nucleus and deduced from there a deformation
of 0.175 (see Ref. [3]). It will be seen that the results do not serditidepend on that.
Interpreting the2| state aB.368 MeV in °Be as rotational, it is absorbed into the butterfly
motion. Instead the first vibrational state is-amode at5.958 MeV, indicating a very stiff
system. The fact that th2368 MeV transition (minus thé keV shift) is seen in experiment
speaks in favour of a vibrationa!Be nucleus. We carried out computations in frame of
the Hartree-Fock method, with pairing correlations tak#n account and using Skyrme Il
forces. The result was that the deformation energy curvéB¥ has a spherical minimium
and it is symmetric for small deformations. Neverthelessywould like to see the effects of
a possibly deformed light cluster. All this has to be taken ecccount when it comes to the
interpretation of the theoretical results.

After having described the three systems mentioned abbeejuclear structure of the
participants of the systeY + °Be + '*2Cs will be discussed shortlyY and !42Cs are
odd-even nuclei with an odd number of protons. Their treatmequires the inclusion of
the spins of the extra protons.

96Sr + 1OBe + 14GBe

The nuclear structure of this system was already discuss&eifs. [3, 4]. The new
contribution here is the inclusion of thitand~y and the relative vibrational modes.

The Sr and the Ba nuclei are prolately deformed and the quyreing deformation
values are given in Table 4.3. The parameters of the Hanmaltoare deduced and listed in
Table 4.1. The spectrum can then be determined from the Et42% The radii along the
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system| %6Sr +1°Be +1°Ba | '2Ru +°Be +3°Sn | 1Mo + 1°Be + 3 Te
Bot 0.338 0.237 0.333
Boz 0.199 0. 0.
Bo3 0.175 0.175 0.175
e 8.6210* 9.1010~* 9.2010~*
hw, 4.270 3.911 3.850
huwe 19.417 19.035 18.511
hw, 2.427 2.880 2.681
hwg, 1.229 - -
hwg, 1.053 1.220 1.280
hwg, 6.179 6.179 6.179
hwy, 1.507 0.524 0.586
i, 1.566 - -
. 5.958 5.958 5.958
Ry 6.66 6.88 6.92
R, 7.11 6.08 6.14
Rs 3.11 3.11 3.11

Table 4.3: Parameters of the three systems. In casel#fermations;,, for one particular nucleus,

is zerothe hiwg, has to be interpreted as the enefgy, of the five dimensional harmonic oscillator.
For the case of an oscillator the corresponding, is put to zero because it is not relevant. The
deformation parameters have no units. The one offithg are in MeV. The units of the radii are
is in fm, where we used for the spherical equivalent radiesfdnmularyA'/3 with 7, = 1.2 for a
heavy and-y = 1.3 for the light cluster. An "-" indicates that either no infoation is available, very
insecure oy is zero.

prolate symmetry axis are also listed in Table 4.3. For thaug#eus it was shown in Ref. [3]
that according to th&U(3) model it can be taken as triaxial and the deformatiof 135.
This consideration does exclude any mixing with othéf(3) representations due to the
SU(3) mixing terms like pairing and spin-orbit interaction. Teere many indications that
the 1°Be nucleus can be assumed to be spherical [3]. However, &r todsee the influence
of a deformed light cluster we will assume a deform&sie nucleus.

Using the parameters of this system listed in Table 4.3, preetsum of the molecular
states is given by (units are in MeV)
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Figure 4.7: Spectrum of the syste{Sr + 1°Be + “5Ba. For detailed explanations, see the text.

Only band heads are shown. On top of each band head theretaiamal band with the characteris-

tics explained in the text. The butterfly mode is thestate to the right and the first relative vibration

is given by thel ~ state. The2™ states belong to the vibrational states with eithel; or K> equal

to 2. The(0" band heads consist of the ground staend-y vibrational (withn,, = 1) band heads
of the heavy clusters.

E = 0.000862[I( +1) — K? +2.406(] K — K, — Ky — K3 | +2n.)
+1.229n4, + 1.053n, + 6.179n,

1 1 1
+1.507(§ | Ky | +2n,,) + 1.566(5 | Ky | +2n,,) + 5.958(5 | K3 | +2n,,)
+3.61n, + 17.59n¢ (4.159)

where we have skipped the zero point energy contributien, . gives the difference in
energy to the ground state. All deformation vibrationatesaare lying above 1 MeV. The
same holds for the butterfly frequency. In conclusion, beldvieV only the rotational states
belonging to the ground state band appear. The relatimetion is at such a large energy
that it does not play any practical role. Interesting to netbat in the calculation o% the
dominant contribution comes from the last term@f;, as given in Eq. (4.124). The other
terms contribute at most three percent. Even the rotaticortribution from the light Be
cluster, given by the term before the last on®ef, can be neglected due to a snm@gll This
is similar to the two cluster case where the correspondimg i® dominating all others.

In Fig.4.7 the expected structure of the spectrum is plotiedy band heads contained in
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Eq.(4.159) are shown and not those belonging to other degféeeedom, like the rotational
octupole band head state in “°Ba and the extra Ostate at 1.465 MeV iff°Sr. As can
be seen in Fig. 4.7 , there are no excited band head stateg bélteV suggesting a stable
behavior against the butterfly motion. Nearly all statewel MeV are rotational one
belonging to the ground state band. Note that in Ref. [3] Aihewas estimated assuming a
spherical’Be nucleus. 4.3).

The energy values of the firgf and4; states are 5.2 keV and 17 keV respectively. The
deformation of’Be results in an increase of the separation of the heavyechaathich raises
the moment of inertia. The expected lowering in the energii¢ise rotational states is small
compared to the results of Ref. [3], which are 6 keV and 20 keMtie2! and4; states,
indicating a small influence of the supposed deformatiomefiBe nucleus.

112RU+ 1OBe+ 1308n

This system is the most symmetric one we could get for whiglearental information
about the structure of the individual clusters are avadapld not just the ground state only.
This is important for deducing the deformation of the nuclédiis system has not been seen
yet but should exist.

The heavy fragments are again even-even nuclei. Using tlestaf Ref. [12] the
corrected quadrupole deformation '¢fRu is given by0.237 corresponding to a largé,.
For 3°Sn no information in these tables are available. Howeveg, Siisotopes are known
to be an excellent example for the seniority scheme [14]. grbeon shell is closed and the
neutron shell is open. Because the seniority scheme izeelasi zero deformation can be
assumed. This is also confirmed by tte(4,")/E(2])) ratio [15] which is1.63 for 130Sn.
For '2Ru the ratio i2.72 indicating a rotational structure.

The parameters of the nuclei and the system are listed ire PaB| including the radii of
the clusters along the line of contacts. The excitationggnirgiven by (units are in MeV)

E = 0.00094[I(I+1)— K?|+2215(| K — K; — Ky — K3 | +2n.)

1 1
+0.524(5 | Ko | +2my,) +5.958(5 | K3 | +2ny)

+3.911n, + 19.035n,

+1.220Ng, (4.160)

where the last term describes the five-dimensional harmmsgdlator for the Sn nucleus.
The spectrum is presented in Fig. 4.8, with the same chaistate as in’Sr + '°Be +
146Ba. Not plotted are the band heads belonging to differenteshsgof freedom than those
described by the model. Also suppressed are the states @f/¢hdimensional harmonic
oscillator of **Sn with 7w = 1.220 MeV. There is g vibrational state at approximately
half a MeV though. One should observe above this band heath@omal structure similar
to the ground state band with the difference that al80 atate exists at about 5.5 keV and a
4" state at 12.7 keV above tle¢ band head state. THerelative vibrational term can also
be neglected. In this system the rotational part is domihtt@lmosti00% by the last term
of ©,; of Eq. (4.124). The influence of the assumed deformatiofiigé is again small.

108M0 + 1OBe+ 134Te

The heavy fragments are even-even nuclei. Using the tabResfo[12] the deformation
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Figure 4.8: Spectrum of the systeft?Ru + °Be + 139Sn. On top of each band head there is a

rotational band with the characteristics explained in &xt. tThe butterfly mode is the"™ state to the

right and the first relative vibration is given by tihe state. The* state belongs to the vibrational

state of the first cluster witlk\; = 2. The 0™ band heads consist of the ground state anchthe

vibrational (withn,, = 1,...,4) band heads of'?Ru. No§ vibrational states could be identified in
the three clusters at energies below 5 MeV.

of 1%Mo is given by0.354 which we corrected t6.333 using the additional deformation de-
pendent terms in th8(E2; 07 — 2]) as givenin Ref. [1]. The experimental information of
the spectrum is taken from Ref. [13]. F&tTe no information in these tables are available,
however, the tendency observed coming from the lighteoses indicates a smail When
we look at the ratid £(4])/E(2])) we obtain 2.92 and 1.23 fdf*Mo and!**Te respec-
tively. This experimental observation supports a deformacieus for'®Mo and possibly a
spherical deformation fof4Te.

The %Mo nucleus is particularly difficult to treat. Within the geetrical model [1] the
Potential-Energy-Surface (PES) of the neigbouring niscl#iRu has a spherical absolute
minimum and a triaxial local minimum at large deformatioB][1The energy of the ground
state, however, lies above the saddle point and the groatelista strong mixture between
both deformations. A largé in average is also indicated by the resultsGof decay for
%Mo where with great success a model for strongly deformedenuas applied [17].

Under the assumption that the Mo isotope is deformed whéélghnucleus is a vibrator
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Figure 4.9: Spectrum of the systed?®*Mo + °Be + '34Te. On top of each band head there is a

rotational band with the characteristics explained in éx. tThe butterfly mode is the™ state to the

right and the first relative vibration is given by thhe state. The™ state belongs to the vibrational

state of the first cluster witk(; = 2. The 0™ band heads consist of the ground state andythe

vibrational (withn,, = 1, ...,3) band heads 0f"®Mo. No § vibrational states could be identified in
the three clusters at energies below 5 MeV.

and using the parameters listed in Table 4.3, the excitat@ngy is given by
E = 0.00092[I(I+1)— K?+2127(| K — K; — Ky — K3 | +2n.)
1 1
+0.586(§ | Ky | +2n,,) + 5.958(5 | K3 | +2n,,)

+3.54n, + 17.30n,¢
+1.280N7, (4.161)

where the last term describes the five-dimensional harmasgdlator for the Te nucleus.
The spectrum is presented in Fig.4.9, again with the sanmmactegistics as if°Sr 4 1°Be +
146Ba. Not plotted are the band heads belonging to degreesanfdre different from those of
the model. Also excluded are the states of the five dimenkiaranonic oscillator of*'Te
with hiwte = 1.280 MeV. There is ay vibrational state at approximately half a MeV though.
One should observe above this band head a rotational steusitailar to the ground state
band with the difference that also3d state exists at about5 keV and a4™* state atl2.8
keV above the™ band head state. Thgrelative vibrational term can also be neglected.
In this system the rotational part is dominated to alm@$; by the last term of9,; of
Eq. (4.124). Again the interpretation with respect to tHeiamce of the"Be deformations
similar as in the two former cases.
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Structure of the participants if?Y + °Be + '*>Cs

This is the third system possibly identified in the experitn@Ref. [11]. The heavy
clusters are odd-odd nuclei. The influence of the extra odtbps should be included in
our consideration. The way to do it for individual nuclei isen in Ref. [1]. Such nuclei
can be described by an even-even core and an odd proton atourtte deformation can
be deduced via the one of neighboring nuclei. T@i&., 30Zrs, as neighboring nuclei and
also$3Sr;, as the core. The deformation of these nuclei are listed in Re¥], except for
39Srs2. The deformation ar@.09 and0.12 for the last two nuclei respectively. However,
one must take some care in using these tables. The formulaasieduce the deformation
from the experimentaB(E2,0; — 2{) transition is theoretically biased, i.e. a strongly
axial symmetric deformation is assumed. In this case thergeftion value is proportional
to the square root of the transition. For spherical and ilaxuclei the formula is incorrect
and in general the deformations deduced are too high duesttath that higher orders [1]
in deformation are also neglected. Nevertheless, thedabl®ef. [12] give a good idea
about the trends. Another possibility is to use the tablelloSakai [15] where the ratio
(E(4])/E(2])) is investigated. For rotational nuclei the ratio3i$3 and for vibrational
nuclei it is2.0. Most nuclei lie in between these two values. For the thredenmentioned
above this ratio i$.99, 1.41 and3.15 respectively. Except for the last value, which is near to
a rotator, the data indicate a spherical deformation, ie@mgent with the data listed in Ref.
[12].

For }32Cs; as neighboring nuclei we took*Xess, 15°Bags and for the corej®Xege.
The deformation values listed in Ref. [12] ave 57 and0.114 for the last two systems.
No information is listed for the first nucleus. Using the &gbf Sakai [15], except for the
first nucleus were we used the ISOTOPE EXPLORER [13], the citi £(4])/E(2])) are
respectively2.41, 2.32 and2.22. They hint to a spherical nucleus while thevalues are in
between. In Ref. [11] a deformed nucleus was assumed, whecha confirmed by data.

4.2.2 Trinuclear Quasimolecules with Spherical Clusters

In the subsection 4.2 we treated tH8e-like Giant Trinuclear Molecule (GTM) with all
three clusters deformed and sitting in the equilibrium gpnfation with their symmetry
axes aligned. The light cluster was sandwiched in-betwkerniwo heavier fragments. A
large variety of collective modes are showing-up such astheerfly, belly-dancer which
are molecular vibrations, rotations of the whole systemalad and~ vibrations of each
clusters. Only a few vibrational states are showing-upwédldvieV, the rotational states of
the ground state band being strongly squeezed. The firsti®e is at approximately 5-6 keV
and the 4 state at approximately 17-19 keV, whereas the butterfly andies at energies
around 2.5 MeV.

Fundamentally in our treatment is the existence of a mininmurthe total heavy-ion
potential which arises as a consequence of the interplayeeet the repulsive-attractive nu-
clear forces and the purely repulsive Coulomb interactihen this is valid for the case of
1'Be-accompanied ternary fission then quasi-molecular coraimpns could develope also
in the a-accompanied ternary cold fission. For the time being thereievidence of such
a molecule because of the "inert” nature of the LCP, whosedisited lays at 20 MeV. In
the present paper we study the molecular spectrum ofbike GTM whose heavy partners
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are also spherical clusters with the aim to understand tifiereinces between the triangu-
lar (oblate) configuration, which is the best candidate offé&Gn our view, and the linear
(prolate) one.

The Three Spherical Clusters Hamiltonian

The Hamiltonian for three clusters with masses m, andmg interacting by means of two-
body forces has the form
D, Dy D3

H =
2my + 2me + 2m

+ Vig + Vag + Vi3 (4.162)
3

In [3, 4, 18] this problem was handled by separating out th@reeof-mass motion and
introducing Jacobi coordinates. The cartesian space twtes being denoted by, 7, and
r3, the Jacobi coordinates, for which the two heavier clustersd 2 appear explicitely as a
subsystem, are introduced by means of the following transdtions:

p = To—T
mry + Moty
A = ————1r;3
my + Mo
R.. — miry + mary + msrs (4.163)

mi + Mo + M3

The corresponding transformation for momentum coordsiaézomes:

mipy — MapPy

pp - my + Mo
p. = MaPLtps) = (mit ma)ps (4.164)
A my + Mo + M3 .
Pem = pi+Dpy+D; (4.165)

The momentunp,,, which is canonically conjugate tp, is the relative momentum of the
particles 1 and 2, ang,, which is canonically conjugate b, is the relative momentum of
cluster 3 relative to a mags:; + my) at the center of mass of cluster 1 and 2.

In Jacobi coordinates, the Hamiltonian has the form

3
1 1 1
H= P? + P>+ P+ Vi 4.166
2(my + my +m3) 212 7 2pa2)3" i;l ’ ( :
with the reduced masses
fi1g = mimeo fi1g = m3(m1 + mg)
2 (ml + m2) ’ 2 mi + Mo + M3

Next we define the components of the vecte@nd\ according to the geometry adopted in
Fig.4.10.

p = (psinay,0,pcosay), A= (=Asin(l —a)y,0, Acos(1 —a)y) (4.167)
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b x

Figure 4.10: The three-body problem : the vectprjoining the heavier clusters 1 and 2 makes an
anglea~y with the z-axis.

This corresponds to define the intermediatexis in between the two vectors (see Fig. 4.10).
For a=0 the vectorp lies along thez-axis. For reasons that will become transparent below
we are not choosing along thez-axis.

The kinetic energy

The components gf and in the laboratory system are defined in eq.(4.167). We rotate
these vectors in the-z plane of the molecular system (see Fig.4.10)

0i = ZDl}ai(e)Qk Ai = Z Dy (0) Ak (4.168)
k k

For the time-derivative of the rotation matrix acting on tdagtesian components pfand
we use:

Dij=> QuDy; . (4.169)
with ;; = —Q,; as an antisymmetric mz:trix whose components are the anggliaity in
the plang(ij) :

0 w; —w)
Q=1 —wy 0
wy —wp 0

After substituting in (4.168) the ansatz (4.167) we get tée& forms ofp and A which are
to be used in the classical expression of the kinetic enerdy’)

P= a0 0 [eos () + w4 sin®(ay)f]

p? sin(2ay)wiwy + 2ap’why (4.170)

) L (1 —a)®N*3% + A? [cos®((1 — a)y)wi? + wh + sin®*((1 — a)y)wy]
+ Asin(2(1 — a)y)wiws — 2a\*why (4.171)
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After inserting the ansatz (4.167) fprand A we obtain the following expression for the
classical kinetic energy (with C.M. part excluded)

1 . 1 )
Ty = Zp12p’ + = pazsA
2 2
1 . 1 . 1 .
= 5#1202 + 5#(12)?)\2 + B [N12CL2P2 + pa2)3(l — (1)2>\2] A2
1

+ 3 [h12p” COS (a7)+u(12)3/\ cos?[(1 — a)y }w

1
+ 5 (M12P2 + p(12) 3)\2) Wy

+ —{,u12p sin’(ay) + pa23A?sin®[(1 — a)v]} wy

-3 {/mp sin(2ay) — pazA’ sin[2(1 — a)y] } wiws
+  [p2ap® — pragys (1 — a) N why (4.172)

wherew’ = (W], wj, w}) is the angular velocity of the molecular frame.

The above expression looks at first glance rather involvethy a convenient choice of
the parametet, depending also on which configuration we are interestethenxunwanted
non-diagonal terms can be removed.

The potential

The interaction between the nuclei composing the quaseocw¢ is taken as in previ-
ously to result from a heavy-ion double folding integral.

The total ternary potential which occurs in the Hamiltonfdi62) is plotted in Fig.4.11
for two different inter-fragment distances between thevieFeaclusters, namely®*?Sn and
H6pd, As can be noticed on this figure the potential displaysasigumolecular pattern with
two minima in the equatorial region and two at the poles ofdhgtem. Due to the axial
symmetry, the minima in the equatorial region are equivaland actually one may speak
about a ring which represents the geometrical locus of thetpwhere the three-body po-
tential attains its absolute minimum. This is the caseRo 11 fm, i.e. when the two
heavier clusters are in the touching configuration. WhendtstanceR is increased up to
R = 15.35 fm the above mentioned ring shrinks to a point on thensgtry axis. In order
to better understand this circumstance we displayed imHig.the minimum value of the
total ternary potential for different values & For R=11 fm, the system has a triangular
configuration and a stable minimum is obtained whereaszfel5.35 fm, the clusters are
aligned and the minimum is unstable. As a matter of fact, ichntiensional tunneling cal-
culations reported in [19] showed that the dynamical ttajgcof the« particle will always
be repelled from the symmetry axis and the system presetw@&sangular geometry dur-
ing the three-body break-up. It is also worthwhile to memtioat preformation calculations
carried out recently [20] are leading to the conclusion thia¢n the two heavier fragments
are at scission (touching point) thepreformation amplitudes are showing-up a pronounced
maximum off the fission axis, that is the third lighter clusgepreformed from the mother
nucleus off the symmetry axis.
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Figure 4.11: The total ternary potential in a three-dimensional ploft (@nel) and a contour plot
(right panel) for the GTM32Sn+ o +!16Pd. The upper pannels are corresponding to an interfrag-
ment distance?=11 fm whereas the lower to 15.35 fm

Next, the potential is expanded up to quadratic terms arthmdolecular minima :

1< 1 1
Vo = B) Z C'z'j(Tj - "“z’)g = §Op592 + 50/\5)‘2 + C’p,\épé)\ (4.173)

i>j=1
where the relation between the two sets of stiffness paemnet given by

Csom? + C33m?
Cp _ C21+ 321107 3122
(m1 —+ mg)
Cy = CUp+0Cy
Csamy — C31myg

= 4.174
OpA mi + Mo ( )
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Figure 4.12: The minimum value of the total ternary potential (upper paard the position on the
y-axis of this minimum (lower panel) as a function of the idt@gment distance.

In eq.(4.173) the value of the potential energy at the mimmaonfiguration was omitted
since it will contribute as a constant term.

Substituting (4.167) in (4.173), and neglecting the termagprtional toa anda?, which
are small as one shall see later, we get the following exjnes$sr the potential energy

1 1 1
Vo =~ §Gp5p2 + 5@5% + 56&)?572
+ Cpa(6pdAcosy — Aopdysiny) (4.175)

The Collective Spectrum

The Triangular Configuration

The kinetic energy (4.172) contains two types of couplingsCoriolis coupling and a
rotation-vibration interaction. In the case of a trianguanfiguration it is worthwhile to
remove the last non-diagonal contribution by choosing

2
o — — Had . (4.176)

pa2p? + f1(12)3A2

With this eq.(4.172) is rewritten as
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1

T = 5#12,02+

1 /~L12M(12)3/)2)\2 .9
2 [1120? + J1(12)3\?

1 .
5#(12)3)\2 +

1
+ —{ulgp cos (a”y)+u(12 322 cos? [(1—a)y }w

+ = {,u12p + M(12)3>\ }wé
+ = {,ulgp sin®(ay) + H(12) sA%sin?[(1 — a)y }w
-3 {,u12p sin(2ay) — pazsA’sin2(1 — a)7] } wiwy (4.177)

We next specialize our considerations to the case of the G*Bh + o + ''Pd which
presumably occurs in the-accompanied ternary cold fission“Cf. Picking-up forp and

A their values at the minimum configuration, we obtaim~1/300. Therefore: <1 and
several terms of the above expression can be safely lefasutave been done above with
some potential terms. Moreover we can approximateltainsists of small deviations from
/2, i.e. we perform the change of variable= 7/2 — ¢ (this is so because we are not far
from the totally symmetric case with; = A,). Under this circumstance one get the new
expression

1 . 1 . 1 .
To =~ 5#12/)2 + 5#(12)3)\2 + 5#(12)3)\252

1 1
+  SHi2p (Wl + WQ ) +

5 SH2) 3)\ wy + (12 3>\ Ewjwh (4.178)

Applying the Pauli-Podolsky quantization method [1] weabt

~ h? o2 h? 0 h? 0?
T = ——— — — -
2#12 6p2 2#(12)3 O\2 2#(12)3)\2 0e?
+ i (L? — L?) + i L2 — e —— L{ L (4.179)
2,u12p2 ’ 2#(12)3)\2 ’ M12,0 .

As one can see this form contains couplings between theaelfferibrational (specified by
the observableg, A ande) and rotational (specified by the angular momentum) modes in
non-trivial way. At this stage we assume that near the minwayosition the displacements
dp, 6\ ande are not large with respect to the equilibrium valugs= py, A\g andey = 0,

i.e. y = yo + dy, with 0y < 1. Under this assumption one can expand in Taylor series all
coordinate functions of the kinetic energy and potentiargy operators. Formally one can
write :

H=H +Z§yzH(l += ZéyzéyjH(Q . (4.180)
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For the moment we restrict ourselves to the zeroth-orderoxppation and we get

o _ WM oE ¢ R® &
2#12 8p2 2#(12)3 6)\2 2#(12)3)\(2) 662
h? h? 1 1 /
- 2L2 T < 2 2) Ly
2p12p 2 M(12)3/\0 H1200
1 1 1
+ 50,,5;)2 + 56&(5)\2 + 50@3552 — Cpahodpe (4.181)

Note that in the zeroth-order approximation the kinetic-dgagonal termx L} L} and the
potential non-diagonal termt pd A are not present.

Due to the degeneracy of the problem the eigenfunctionseHamiltonian must be
constructed as linear combinations of the rotation matriog,,.. Since L? and L', are
commuting withf]o only combinations of differenf{-values for the samé and M are

occuring
+1

=Y Fllp,\7)Dix(9) (4.182)

K=—1I

and the Schrodinger equation corresponding to the eiigavareads:

1 0? 1 07 hz  0?
— s+ + — 4.183
{Mm 0P pa2)3 ON2  [u12)3A\G 02 ( )
— Co(p—po)® = Ca(A = Xo)? = ChXGe” + 2C, )\ \oe(p — po)
1 1 1
- I(T+1)+ — K2+2E}Ff:0 4.184
Mlng ( ) (M(12)3>\3 Mlng) K ( )

We therefore have an equation which describes three onendional oscillators, two of
them being coupled through a coordinate-coordinate teemthere is a potential coupling
between the modgsands. The decoupling of these two modes can be easily done by means
of an unitary transformation [21]

77 , iz p O H(12)3 0 )}
U =expqin | [———1=o = [===Xpe == 4.185
P { 1 ( H(12)3 Ao O 12 0 ap ( )

wheren is obtained from the following implicit equation

2C
tan 2 = — 2 (4.186)
fiafi(12)3(w? — w?)
such that the non-perturbed spectrum reads
1 1 1
(© ~ -
Effgnpnam = hw, (”p + 5) + hw. (ng + 5) + hwy (m + 5)
h? K2
+ [I(I+1) - K*] + K? (4.187)

2#12/)3 211(12)3 )\(2)
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the frequencies being defined as follows

C C
wo = 4/, w=w.= A (4.188)
H12 H(12)3
1
@3(8) =35 (w2 + w? £ (w2 — w?) sec2n) (4.189)

providedw, > ..

We have yet to consider the action of the parity transforomatin the three cluster sys-
tem. This will tell us the parity of a given state and the sempeeof positive and negative
parity states within rotational bands. To start with, ndtatall three clusters have different
masses. We therefore can define the intrinsic system, thecolal plane in a definite man-
ner. According to Fig. 4.10 cluster number 1 is left to clustember 2, as seen with respect
to the moleculak-axis. The third cluster is in the upper plane with a positivealue. This
defines the equilibrium position around which small ostitkas are considered. After the
parity transformation is applied, the cluster 2 is to thé ¢éfcluster 1 and cluster 3 is in the
lower half plane. In order to fulfill the same conditions oé timolecular intrinsic system, as
defined above, we have to apply an additional rotation inramleome back to the situation
where cluster 2 is to the right of cluster 1 and cluster 3 isragathe upper plane. This
rotation is given by

R(z,y,2) = (—x,y,—2) . (4.190)

Note that the relative angles do not change,.stays the same. This is easy to under-
stand, because the triangular equilibrium position is wWeflned and the relative angles do
not change. Therefore, the parity transformation impligly @ redefinition of the rotational
angles with respect to the laboratory. The effect of thiatioh is obtained by applyinég
to the rotation matrices in Eq. (4.182). This rotation is bsgguent application of changing
first (x, vy, 2) to (z, —y, —z) and an additional one b80° around the new-axis. The action
is described in Ref. [1] and the result is

RD3(6) = (=) Dy, (6) (4.191)
Therefore the rotational part of the solution in Eq. (4.182% to be modified such that the
states have a definite parity. This is achieved by
(Dix = (=)™ Diy_g) (4.192)

where the positive parity states are given by the plus andegative ones by the minus sign.
Also K has to be positive in order to avoid double counting. The Bdl92) immediately
gives us a selection rule for the cake= 0. The sequence of states is

K=0: 0% 1°,2% 37, 4% ., (4.193)

i.e. for K = 0 bands positive and negative parity states are alternatiikg.in the case of
octupole deformed nuclei [1] the symmetry related to thexebhz — —z is broken in the
GTM due to the fact that the clusters 1 and 2 are not identitaagh in the case considered
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in this paper they have close masses. Consequently thetioontthat /< is restricted to even
integers is not valid in this case. Far # 0 there is no selection rule and for a given angular
momentum there is parity doublet

K#0: K* (K+1)* (K+2)7% .., (4.194)

Including also the quadratic terms from the expansion @). &% must add to the zeroth-
order Hamiltonian (4.181) the below listed perturbation.

~ h? SA o
SH® = —— — (2-32 )6\ == — L2
sy (020 (52 )
2
_ - Kz - 35—”) 5—p(L2 —LZ—-1)-2 <1 — 25—”) 5L’1Lg}
211120 Po/ Po Po

3h? A2
+ [CAAOM - (1 +olf (12)320)} e, (4.195)
4111205 H120p

and second-order corrections to (4.187) can be computexiding to the stationary pertur-
bations theory.

In Fig.4.13 we represented the rotational states with gnamaller than 1 MeV for the
g.s. band and the band witti= 1 and 2 of the GTM32Sn +a +!1°Pd. The excited rotational
state 1 is at 5.4 keV, and the2state at 16.8 keV. The first state of the= 1 band is at
213 keV whereas the'2state of thell = 2 band is at 836 keV. The heads of the vibrational
bands are laying at much higher energy, and were not plotiatiie figure. For example
the band headi, = 1,7, = n. = 0) is located at 3.85 MeV, a state which however could
be reached in cold fission. We also compared on the same figeiresults obtained in the
nonperturbed case and taking into account the perturbdticmeasy to infer from here that

1000 ~

K=2

Energy [keV]
a1
8

K=1

—— Unperturbed
Perturbed

Figure 4.13: The first rotational band& = 0, 1, 2 in the zeroth-order approximation (full lines) and
with the account of the first order perturbation (dashedshine

04

=0
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taking only the zeroth-order Hamiltonian is a satisfactpproximation.
The Linear Configuration

In this case the center-of-masses of the three clusterstiing ®n the same axis in the
equilibrium position and the bending of this configuratisrdescribed by the angle= «.
In order to cope with the non-diagonal terms we first equateeto the factor multiplying
wi w4 which provides the following equation for the parameter

M(12)3)\2 sin 27y
120 + fi(12)3 COS 2y

tan 2ay =

which for very small values of coincides with (4.176). This makes that also the coupling
w4y disappears and the classical kinetic energy of the lineaV Gads :

1 5, 1 ' 1 pieppazsh’ |
Ty ~ = 24 - A4 = 2
cl oH2p + SH(2)3 + 2 1inap? + M(12)3>\2€
1 2 A2
1 Hi2p p(12)3 22,2

2 f2p? + pa2)3A? ’

1
+ 5(#12,02 + paz)sA) (WE + wy) +

(4.196)

Upon quantization one gets

P h2<1 1)@2
2012 0p*  2pa23 0N 2 \ pazsA?  piep? ) 02

h? h? 1 1 1
+ L2_Ll2 4+ — ( + ) (LIQ__)
2(p12p? + pa2)3A?) ( 3) 2e% \ a2)sA?  pi2p? g
(4.197)

Using the same approximations as in the previous case wendbtahe fluctuating part of
the potential in the zeroth-order approximation

~ 1 1 1 1
V= 5Cp<5p2 + 56&(5)\2 + 50})\362 + §CPA5p5)\ (4.198)

Thus in the linear case we deal withpa\ coupling instead of a-c one. Undertaking the
same steps as previously, the zeroth-order spectrum igyreathputed :

1 1 3
Eﬁznpnﬂb\ - h’a)ﬂ (nﬂ + 5) =+ m)\ (n)\ + 5) + hws (|K| + ne + 5)
h2

2(t120% + 1(12)3A3)

[I(I+1) - K? (4.199)

where the frequencies are defined as follows

. 1
Wg(A) =3 (W2 + W} £ (w2 — w3) sec2n) (4.200)
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Figure 4.14: The three cluster molecule is presented via three massspd@etween each two mass
points a spring is plotted, representing the approximatenbaic interaction between these mass
points. The numbers 1 to 3 enumerate the clusters.

in casew, > w, and

1 1
W, = )\0\/0,\ < 5+ 2) (4.201)
H(12)3A H12p

The parameten is determined from a relation similar to (4.186) with thef@liénce that is
traded for\.

20,
M12/~L(12)3(W§ - Wi)

The rotational spectrum of the linear molecule is approxaétyatwo times more com-
pressed than the one corresponding to the triangular coafign. This time the excited
rotational 1 state is at 2.8 keV and the Ztate at 8.33 keV. Since the molecule is linear
there is a pronounced hindrancefo #0 rotations, the state™lof the K =1 band being
located at 14.5 MeV. The first vibrational band heads aretémtat almost the same energies
as in the triangular case.

tan2n = —

4.3 Algebraic Models

4.3.1 U(7) Model of Trinuclear Quasimolecules

In the subsection 4.2 the GTM was treated by assuming thatheipystem is in a linear
configuration, ii) the inclination angles of the nuclear syairy axis to the axis which de-
fines the linear orientation should be very small and iii)liplet cluster has to be sandwiched
between the two heavy ones. An algebraic model, inspireadayiqus work on baryon struc-
ture [22], might overcome these restrictions. The advantddhis model is the easiness in
how one can describe complicated systems, which would megoimplex procedures in the
geometrical model. Also it permits to discuss possible dyioal symmetry limits, allowing
for an analytical description of the spectrum. This latt@nt pvill not be discussed here. The
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main idea of the algebraic model were presented in [23]. Tammroblem is how to ob-
tain the model parameters starting from known stiffnesaipaters, describing the pairwise
interaction between the clusters. On one side we will hagetbture of three masses con-
nected via a spring (see Fig. 4.14) and on the other side thé¢he algebraic model. The
mapping can not be one-to-one but it should reproduce at f@xgges similar frequencies
of thevibrational modes. For the rotational part we will assume a simple espas The
model does not contain yet the vibrational contributionthefindividual clusters, i.e. ng
and~ vibrations. In other words, the clusters are treated witlstructure yet. Without any
inner structure, a geometrical model can still be carriet] asi shown in this paper. How-
ever, the introduction of structure to the clusters will raight forward within the algebraic
model and without the problems involved in the geometriczdtinent. As one possibility,
one can introduce the IBA-1 Hamiltonian [24] for the indivia clusters, using a dynamical
symmetry limit for simplicity. As it turned out in Ref. [18{he dominant contribution to the
energy of a linear configuration comes from the relative oroof the nuclei and not from
the deformation of the clusters. The deformation plays airothe vibrational modes of the
individual clusters.

In what follows we will briefly present the U(7) model and tharHiltonian.

In [22] an algebraic model for three particles with identticess was proposed, in the
context of the orbital excitations of quarks. In [25] the mbdlas extended to three particles
with, in general, different masses, intended to be appledtdmic molecules. The U(7)
model, whose name will become more transparent furthemheln be applied to any kind
of three particle systems, as the three-cluster molec@8lg fliscussed in the introduction.

The number of degrees of freedom are six and for each relatioalinate we can intro-
duce boson creation and annihilation operators, carryaggtive parity. The basic concept
of the U(7) model is to introduce a cutoff through the additas a scalar boson of positive
parity. With this the spherical components of the creatiperators are given by

p;,mv pi,m’ ST (m = _17 07 1) (4202)

The total number of boson¥ = n, + n, + n, is conserved, which implies that the total
number ofp-bosons is restricted between zero and

Taking all possible double bilinear products of a creatiatihwan annihilation operator,
we obtain the algebra u(7) with its 49 generators. A converfiem of the generators in
terms of tensors with definite angular momentum is given in(&yjof Ref. [25]. The clas-
sification and the structure of possible dynamical subgsasigiven in Ref. [22]. The most
convenient basis, with respect to which the model Hamiltperator will be diagonalized,
is the one given by Eq. (4.2) of Ref. [22]. The basis stategmen by

| N, (np, Lp), (nx, Ln); LMy, > (4.203)

with n, andn, the number operator of the and\- oscillation quanta respectively. Tig
and L, are the angular momenta of theand \ part, L is the total angular momentum and
M, its projection.

As the model Hamiltonian we use the one given by Eq. (12) of R&f plus a rotational
energy contribution. We will resume it here for completenes

H = a,L?+ AP/P, + CP}P, + CP]P;
+ D(P/P,+ PlP) + E(PlP;+ P]P))+ F(P}P;+ PIP,) . (4.204)
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The operator$’; are defined via
Pl = pl-p,+pl pr— Ris'st
Pj = sin® By p} - pr — cos® By pl - p,
Pg = sin(QBo)pL - px — cos Yo(sin? 3, pi - pa + cos® By pz “Dp) s (4.205)

where the paramete®, = \/p, - p, + Ao - A¢ describes the extension of the system. The
[y is defined by the relative size pfand, i.e. \o = R cos 3y andp, = Ry sin 3y, and~g
gives the angle between the two vectors. The index zeroateBahe equilibrium position
of the system around which the oscillations take place. Hnarpetersi,, 5, andy, can be
related to the definition of a coherent state, which at thetgeg describes the approximate
eigenstate of the system [25]. The coherent state is defiaed v

1
| NRy, Boyo >= W(bﬁ)N 10> (4.206)

where
[ST + Rq cos 50]91@ + Ry sin fo(cos yop}, . + sinyop!, , )

V1+ R?
is called thecondensate bosoifror more details, see Ref. [25] and references therein.

In order to describe the motion around the equilibrium posjtfluctuation bosons are
introduced in [25], which are orthogonal t. These aré],, describing the breathing mode,
bl , the butterfly mode, antj, is the mode where the angjebetween the vectors and )\ is
changing (shearing mode).

A Bogoliubov treatment is applied, where theandb,. are substituted by their expec-
tation valuey/N and only leading terms iV are taken into account. The Hamiltonian
obtained has the form

bl =

Hp =Y Eajasbl,ba, (4.207)

aq,02

with i, j = u ,v, w. The frequencies are given by [25]

€u = 4ANR§

e, = BNR3sin?(26)/(1 + R2)

cw = CNR3sin?(2f)sin® /(1 + R2)

cw = 2DNRZsin(263y)/4/1+ R?

fuw = 2ENRZsin(26)sinv/4/1+ R?

cow = FNREsin®(28;)sinvy,/(1+ R3) . (4.208)
These are the estimates of the lowest frequencies, whichilveegd later in order to relate

them to those calculated in a nuclear interaction model.

In order to determine the parameters of the U(7) model, irsaistep the stiffness of os-
cillations between each two of the three clusters is detezthiFor illustration, see Fig.4.14
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where the interaction between two clusters is presentea garing. Afterwards we will
apply several steps until we can compare the energies atdmes to those of the Hamilton
of eq. (4.207). Because the Hamiltonian, in a geometricalpe, is not identical to the one
of the U(7) model, we will require that the lowest frequescae similar. The geometrical
potential, we start with, is itself an approximation to threeacalculated between the nuclei,
i.e. a mapping which reproduces the lowest frequencies ie than sufficient. The mapping
IS necessary because in the algebraic model there is nd difation to the stiffnesses which
are calculated in a nuclear interaction model.

The stiffness coefficients are again calculated using thwlgdolding potential and the
resulting potential can exhibit at some point a minimum. Adpatic expansion around this
minimum is made, giving the stiffnegs; of the potential between clusteand;.

The relevant degrees of freedom of the three particle syseauding the center of mass
motion, can be cast into Jacobi coordinates, and defined163). This definition deviates
by some factors to the one given in [25]. It is not relevanttfa further steps. Doing the
same for the coordinates at the equilibrium position, wedsfimedp = p — p, andé =
A — Xg. This allows us to relate the spatial differences betweendwsters to the difference
vectorsip andé . Further we have

ro—7T1 = P
mo
_ = — ™ 5
"3 " m1+m2p
my
Po—T3 = —— p+ A, (4.209)
my + Mo

wherem,, refer to the masses involved.

The classical Hamiltonian, from which we start, and wheedbénter of mass motion is
excluded already, is given by
M(lz

Hy=HM25p2 ¢

5 HO25 537 + Cp5p2 + %5}3 + Cpndp - 6A (4.210)

with

Cosm? + C3ym?
€, = On St
(m1 + mg)
Cy = Cyu+Cy
Casmy — C3ymy

Con = (4.211)

my + Mo

andy» is the reduced mass between cluster 1 and 2, whilg; is the reduced mass between
cluster 3 and the combined m&ss; + m») at the position of the center of mass of the first
two clusters.

When the vecton is defined along the molecularaxis and the vectgp in the molec-
ular (xz)-plane (note that the molecularaxis is defined perpendicular to the plane of the
molecule) the potential acquires the form

Vo = %5p2 + gpoév + C’\é)\Q + Cpa(cos Yp0pdX — po sin ypdyoN) (4.212)
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where~, and p, are the equilibrium values of and p at the potential minimum and an
expansion up to quadratic terms was made. We are interastbe ipure vibrational part
only. Excluding the rotational part and possible mixings kinetic energy is given by

. 2
T = %5/)%%&%%5% . (4.213)

The p and\ give the length of the corresponding vectors.
The classical Hamiltonian is quantized using the Paulie®sky procedure [1]. The
expression is given by

R 2 92 2 2 2 2
h* 0 h 0 h ( 1 1 )8 (4.214)

Tib=—5—%535 "5 73 = +
v 24119 Op? 201123 oN? 2\ p2p ,u(12)3/\(2) o?
In order toestimatethe vibrational energies we set, for a brief momeéng, = 0. This is

the case where the coupling terms of the potential betwegmand~ vanish. The vibrational
part of the Hamiltonian can be solved analytically with thegiuencies

C
e, = h —£
H12
C
Ex = h A
H(12)3
e, = h Cp2< L + L ) (4.215)
’ o uup% M(12)3)\% . .

They refer to thdluctuationsn p, A\ and~ respectively.

For the rotational part we assume a simple fatif. More terms can be introduced, like
Li or L3 (see ref. [25]). As for the valuewe takesg:, with © = (p12p? + M(12_>3Ag) which
is the largest moment of inertia possible. For the rotati&imeetic energy we finally have

2
~ h 9

Trot = 4.216
rot 2(t12p% + 1(12)3A3) ( )

which is still too simple because in general mixing terme llk,, L, occur. These terms
have to be simulated by some combination of operators of {{7¢ dodel, which has not
been done yet.

A problem is still related to the interaction part. If we stitoge the fluctuation coordi-
natesyp, 6\ andd~y in terms of their boson creation and annihilation operatersns of the
typep'p’ appear, not conserving the number of bosons. One possipessl is to substitute
it by

1
0poN — 5(5p5)\+7T5p7T5,\)

1
5’75)\ — 5(575)\+7T577T5)\) s (4217)
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wherers,, 75, andr;, are the conjugate momenta to the corresponding coordineies
we really change the original Hamiltonian. The change iifjad by three arguments: i)
the frequencies in (4.215) are of the order of several Me\ickwimplies that the mixing
between the oscillations, given by the terpig’, is probably small{hw, excitations) and
i) the parameter in front of this interaction turns out tospeall for the system discussed. iii)
The Hamiltonian, we started with, is itself an approximatamd changing it to the more ad-
vantageous form of the U(7) model might not change much. Neskess, in other situations
the procedure might not be valid.

As the next step we relate the fluctuationgj and~ to the breathing«), the butterfly
(v) and the shearing modey). Inspired by [25] we take

pg , = sin Bobl — cos Bybl,
pj;)\ = cos [ob!, 4 sin Fyb!
pj;ﬁ, = pl . (4.218)

With this we find as the final vibrational Hamiltonian

Hyp = eublby +e,blb, + cubl by
4+ Eun(blby + blby) + 4w (bl by + bl by)

4+ Epw(biby + 01D, (4.219)
with
C\h
Euw = Eptext £ — sin [y cos By cos Yo
2[112C,p12)3Cr ]
C\h
gy = E,FtEr— i - sin 3y cos 3y cos Yo
2[112Cpp12)3Cx )4
Ew = Ey
Co\h
cw = (ex—¢,)sinfycosfy — £ - €Os Yo cos(20p)
2[p12C o p1(12)3C ]
Co\h
Cuw = — 2 1 sin 7o COS ﬁO
2[1112C, (12304
Co\h
Ewy = — P2 T sinypsin 3y . (4.220)

2[p12Cpp1(12)3CA ]

These values have to be compared to the ones given in (4.208).

Application to 32Sn+ o + ''6Pd

The double folding potential provides us the values of thinsss coefficients in the quadratic
approximation as discussed in 4.2.2 Since the present ncogels with spherical clusters
only the monopolar term is retained in the expansion of thergal.

For thea particle we use a gaussian-like density with a width paramgt= 0.69fm 1.
For the strength of the compression tevigm,o we used for exemplification 2 choices: 1)



4.3 Algebraic Models 168

Veomp12 | Veomp2a | Veomp1a|  Ki2 K3 K3
187.5 228.7 | 2255 | 2149 | 213.2 | 218.8
300. 300. 300. 383. 327. | 324.

Rigmin(po) | Rosmin | Rizmin | Ao o Yo

11.0 7.37 7.65 5.14 65’ 84°
111 7.53 7.82 5.34 | 6417 | 8%
Cha Cas Cis C, C Coa
97.3 17.77 | 10.29 | 104.59| 28.06 | -4.64
163.8 2543 | 12.63 | 173.8 | 38.06 | -7.63

Table 4.4: Relevant parameters of the theory, including the valueshferstiffness of the potential
parameters.

We seek to reproduce the nuclear compression modulusaccordance to the nuclear EOS
(nuclear equation of state) [26] by varyif@,mpo Separately for all the three pairs (see first
line of Table 4.4 where all the values are in MeV). 2) A uniqaéue ofVeompo = 300 MeV

is used, as have been done in a calculation-tike nuclear molecules life-times [27](see
second rows of Table 4.4). This choice obviously leads tsisealy larger nuclear com-
pressibilities, which according to experiments on giannhopmle resonance should range
between 180 and 240 MeV [28].

Along with the stiffness parameters we obtained also thatioo of the absolute minima
of the total ternary potential [29] which we chose to be theildarium position of our trian-
gular molecule. In Fig. 4.15 the situation is illustratedhese at the position 1 there is the
1323, at 2 thé'%Pd and at 3 the particle. We obtained for the equilibrium positiomsand

a

7.65fm 7.37fm

182 11fm 11654

Figure 4.15: The geometry of the systel?Sn+ o + 6Pd.
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A[MeV] B[MeV] | C[MeV] | D[MeV]
0.0043428 4.3748 1.4507 | 0.018401

E[MeV] | F[MeV] | ar[MeV] -
-0.018401| -0.012917| -0.87808 -

Table 4.5: Parameter values of the U(7) Hamiltonian.

MeV keV
A —_ - A

104 20—
+
L —7

5 o 10
+
_1'
0 - 0d —ot

S

Figure 4.16: The spectrum of32Sn + o + ''5Pd as obtained in the U(7) model. On the left hand
side all states up to spin 2 are shown, except for the exditdessof the ground state band. The latter
are given on the right hand side. There is a degeneracy diyeoand negative spin states for spin 1
and 2 in the ground state band.

\o the valuesi 1 fm and5.14 fm respectively. For the angte we obtainx 84°.

Taking as/V = 10 and using Egs. (4.208), (4.211) and (4.220), we obtain thenpaters
Ato I anda; which are listed in Table 4.5.

Setting theC,, equal to 0 does changé, B, C' and D only at the last digits shown,
howeverE and F' are 0. This situation is the same as in the geometric pictinenvwe ex-
tracted the eigenfrequencies ¢, ande,, = ¢, for C,, = 0. The values are, = 8.386MeV,
ey = 17.20MeV ande, = 71.57MeV. The latter vibrational state is too high in order to be
believed to exist. After the mapping, this division irtpande, which are nearly separated,
gets lost and there is a strong mixing between the breathingnd the butterfly (v) mode,
which manifests itself in a large,,. In order to compare the numerical evaluation to the
estimates of the frequencies as given in Eq. (4.215) andjuseparameter values as given
in Table 4.4, we have to put,, = 0 in order that the mixing between the and \-modes
does not alter the position of the vibrational states. Waiolds the lowest frequency for
the () and ) motion the values 9.1851MeV and 17.7067 MeV, while for thenjode we
havex~73MeV. These values are sufficiently close to the ones gibenea

When the mixing due t@’,, is taken into account, the spectrum changes by shifting
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gu 61} 5w 5uv 61,6’[1} 6Uw

25.6083| 25.5671| 8.3857| 3.4159| -2.3847| -5.1035

Table 4.6: Values of the parameters of Eq. (4.220), in MeV.

the vibrational modes to lower energies. In Figure 4.16 ves@nt the spectrum obtained.
According to this, the ground state band is severely squeagdor the case of the linear
molecule [18]. However, for the excited vibrational statiesre is no clear band structure
apparent. The reason is the following: In the zero order @ppration of our mapping,
obtaining the values,’s of Eq. (4.220), no Coriolis force is present in an appafenn.
However, in the}v corrections thé/(7) model introduces Coriolis couplings leading to the
effect seen. Due to a strong Coriolis force, the band straaats distorted.

The values of the vibrational parameters, as given in (4.2&9given in Table 4.6 where
it can be noticed that the mixing between the butterflyand the breathing{) mode is very
strong, i.e. it will be difficult to obtain states with a pureotion related to one of the two
modes. As it seems, in triaxial nuclear molecules, with t@avty and one light cluster, there
is no clear separation between thieand thev-mode. In other configurations this might be
possible, when the value ef, is small compared te, ande,,.

One signature in the-spectrum for the existence of a three-cluster moleculelavbe
a transition from a vibrational state to levels in the grostate rotational band. Because
the ground state band is strongly squeezed in energy, ongdsbbserve a splitting of the
transition line into several others with only a few keV apa8election rules in angular
momentum have to be taken into account and will limit the amiad splitted levels. For
example, ar’1-transition from al ™ vibrational state is only allowed to decay to theand
2~ levels of the ground state band (see Fig.4.16).
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