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1 INTRODUCTION

In this review one exhaustively discuss the interplay between the two main cur-
rent flows for a nucleus consisting of interacting neutrons and protons, i.e. the
irrotational and the rigid rotor flows.

In the first chapter the Villars’ canonical transformation is presented both in the
classical and the generalized form. The irrotational value for the inertia moment
is deduced from the Villars’ treatment. Next the Rowe model is presented and
one explain the reason which underly the generation of rotational flow and the
corresponding rigid-rotor value for the moment of inertia. The last section of the
second chapter deals with the generalized Villars’ transformation which gives the
most general real transformation of the coordinates and velocities of a many-body
system of interacting particles. The physical quantity called vorticity is introduced
in connection with special classes of velocity fields. The kinetic energy in the new
coordinates is written and the rotational component is separated from the rest of
possible kinetic terms.

Chapter three is dedicated to the algebraic approach of nuclear collective mo-
tion. To every rotational model considered in the second chapter there is associated
a specific dynamical group. Special attention is payed to the construction of ir-
reducible unitary representations(unirreps) of the SL(3,R) group by the method
of induced representations. There is also discussed the group associated to the
rigid-rotor ROT (3) and the ”Mass-Quadrupole Model”-CM(3).

The last chapter(4) concerns the problem of quantum mechanical systems in
rotating frames. The specifical shapes of currents in the cranked anisotropic har-
monic oscillator are deduced. The phenomena of vorticity lines in the irrotational
velocity field is also discussed.
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2 THE VILLARS’ CANONICAL TRANSFOR-

MATION

2.1 The classical Villars’ transformation

The ”canonical form” of the kinetic energy of any system of identical interacting
particles appears as a result of a canonical transformation in which the original
particle coordinates and momenta are replaced by the following new variables:

1. The center-of-mass X, and total momentum ~P .

2. The Euler angles θs (s = 1, 3), describing the orientation of the body-fixed
frame in space, and their conjugate momenta Πs, which are linear functions
of the total angular momentum components LÂ.

3. 3N − 6 intrinsic variables ξσ and their conjugate momenta πσ.

The first two conditions are justified by the fact that for any system of interacting
particles there are two obvious collective constants of motion: the total linear and
the total angular momentum. As a result of the canonical transformation one
try to write the Hamiltonian(kinetic energy) of the system in such a way as to
display its dependence on these two constants of motion. The Euler angles of the
body-fixed(intrinsic) frame are the collective variables since a common rotation
of particles can be considered as a rotation of the body-fixed system. The three
Euler angles θs = (ψ, θ, φ) [Goldstein 1959] define an orthogonal transformation
RAα(θs) from space-fixed components x′iA, where the indices refer to the Cartesian
components:

xiα = Xα +RAα(θs)x
′
iA(ξσ) (1)

x′iA = RAα(θs)(xiα −Xα). (2)

Here α stands for the letters α, β, γ, the space-fixed Cartesian axes, and A for
A,B,C, the body-fixed Cartesian axes(see Fig.1). The dummy indices convention
is used throughout 1. In equation (1) the center-of-mass Xα is also isolated. This
is equivalent to the statement that the body-fixed system is free of the center-of-
mass motion.

Using the definition of the center-of-mass in space-fixed coordinates

Xα =
1

N

N∑

i

xiα (3)

where N is the number of particles in the system, one derive a first consequence
due to the particular choice of the body-fixed frame by summing eq.(2) over i

∑

i

x′iA(BC) = RA(BC)α(
∑

i

xiα −XαN) = 0 (4)

1repeated indices are to be summed even if the summation symbol is not indicated
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Figure 1: Coordinates systems: α, β, γ denote the laboratory coordinates A, B
and C are the body-fixed coordinates and θj are the Euler angles.

Another constraint is obtained by imposing the vanishing of inertia moments in
the body-fixed frame

∑

i

x′iAx
′
iB =

∑

i

x′iBx
′
iC =

∑

i

x′iCx
′
iA = 0 (5)

The six equations, (4) and (5), determine how the center-of-mass coordinates and
the Euler angles depend on the space-fixed coordinates xiα. The coordinates x′iA
are functions of 3A − 6 independent internal (intrinsic) coordinates ξσ, satisfying
the above conditions identically.

Equation (1) is the coordinate transformation part of a contact(canonical)
transformation generated by [Goldstein 1959]

F (Pα, xiα) =
3∑

β=1

Xβ(xiα)Pβ +
3∑

s=1

Πsθs(xiα) +
3N−6∑

σ=1

πσξσ(xiα) (6)

where Pα stands for the set of canonical momenta Pα,Πs, πiα which are conjugate
to Xα, θs and ξσ. The old momenta can be obtained from the generating function
F by the usual expression

piα =
∂F

∂xiα

=
∂Xβ

∂xiα

Pβ +
∂θs

∂xiα

Πs +
∂ξσ
∂xiα

πσ (7)

One also obtains from eq.(3)

∂Xβ

∂xiα
Pβ =

1

N
δαβPβ (8)
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In order to solve the other two terms in eq.(7), Πs(x, p) and πσ(x, p) one shall
use the Villars’ approach [Villars 1957a]. The first step consists in transforming
the third term of eq.(7), in order to eliminate the explicite occurence of ∂ξσ/∂xiα,
a quantity that one need not to evaluate, in favour of the more interesting resid-
ual momentum, to be defined bellow. The transformation begins by taking the
derivative of eq.(1) with respect to xkβ, considering Xα, θs and ξσ to be functions
of xiα’s. Using eqs.(2) and (3) this gives

∂xiα

∂xkβ
= δikδαβ =

1

N
δαβ +

∂RAα

∂θs
· ∂θs

∂xkβ
x′iA +

∂xiα

∂ξσ
· ∂ξσ
∂xkβ

(9)

Rearraging the terms in this last equation one gets

(δik −
1

N
)δαβ =

∂RAα

∂θs

· ∂θs

∂xkβ

·x′ia +
∂xiα

∂ξσ
· ∂ξσ
∂xkβ

(10)

In deriving (9) use have been made of

∂RAα

∂ξσ
≡ ∂Xα

∂ξσ
= 0 (11)

Next the eq.(10) is multiplied by ∂xiα/∂ξτ and we make the summation over iα

∂xkβ

∂ξτ
=
∑

i

∂xiβ

∂ξτ

∂RAα

∂θs

∂θs

∂xkβ

x′iA + Cτσ
∂ξσ
∂xkβ

(12)

where we have introduced the new definition

Cστ =
∑

iα

∂xiα

∂ξσ

∂xkα

∂ξσ
(13)

Obviously, the transformation is meaningfull if Cστ has inverses so that (12) can
be solved for ∂ξσ/∂xkβ ,

∂ξσ
∂xkβ

= C−1
στ

∂xkβ

∂ξτ
− C−1

στ

∂xiβ

∂ξτ

∂RAα

∂θs

∂θs

∂xkβ
x′iA (14)

Then, multiplying by πσ and summing over σ, one obtains the expression

πσ
∂ξσ
∂xkβ

=
∂xkβ

∂ξτ
C−1

στ πσ − ∂θs

∂xkβ

∂RAα

∂θs
RBα

∂x′iβ
∂ξτ

C−1
στ πσx

′
iA (15)

where eq.(1) has been used in the r.h.s.. Interchanging (kβ) → (iα) and (iα) →
(jγ) and reintroducing the summation symbols for convenience, one obtains

∑

σ

πσ
∂ξσ
∂xiα

=
∑

στ

∂xiα

∂ξτ
C−1

στ πσ

−
∑

s

∂θs

∂xiα

∑

AB

∂RAγ

∂θs
RBγ

∑

j

x′jA
∑

στ

∂x′jβ
∂ξτ

C−1
στ πσ (16)
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Since Cστ = Cτσ, one can permute σ and τ . Splitting also the sum over A and B
into two sums by permuting these two indices one have

∑

σ

πσ
∂ξσ
∂xiα

=
∑

στ

∂xiα

∂ξσ
C−1

στ πτ

−
∑

s

∂θs

∂xiα

∑

AB

1

2



∂RAγ

∂θs
RBγ

∑

j

x′jAp
′
jB +

∂RBγ

∂θs
RAγ

∑

j

x′jBp
′
jA





where we have introduced a new quantity p′jA which has the dimensions of a mo-
mentum

p′jA =
∑

στ

∂x′jA
∂ξτ

C−1
στ πσ =

∑

στ

∂x′iA
∂ξσ

C−1
στ πτ (17)

Here we define the antisymetric matrix with elements two-rank tensor

As,AB = −As,BA =
∂RAγ

∂θs

RBγ (18)

and the important physical quantity called intrinsic angular momentum 2, since
it is expressible in terms of ξσ and πσ (App.B)

L′
AB =

∑

i

(x′iAp
′
iB − x′iBp

′
iA) (19)

One are thus lead to the final relation

∑

σ

πσ
∂ξσ
∂xiα

= RAαp
′
iA −

∑

s

∂θs

∂xiα

∑

A<B

As,ABL
′
AB (20)

At this stage it is worthwhile to notice that neither x′iA nor the p′iA are inde-
pendent variables and therefore are not conjugate variables. Nevertheless, Villars
introduced a suggestive notation for an approximation one is tempted to try at
this place, if the number of particles is sufficiently large: to consider at least some
of the x′iA and p′iA in fact as independent variables, in which case they become
conjugate pairs, of course.

The second step consists in expressing the momenta Πs in terms of the total
angular momentum with respect to the center-of-mass

Lαβ =
∑

i

(xiαpiβ − xiβpiα) − (XαPβ −XβPα) (21)

Multiplying eq.(7) by xiβ and substracting from the same quantity, but with α and
β interchanged one gets

xiαpiβ − xiβpiα =
1

N
(xiαPβ − xiβPα) +

∑

στ

(
xiα

∂xiβ

∂ξσ
− xiβ

∂xiα

∂ξσ

)
C−1

στ πτ

−
∑

s

(
xiα

∂θs

∂xiβ
− xiβ

∂θs

∂xiα

)
(
∑

C<D

As,CDL
′
CD − Πs)

2Later we shall see that this quantity is related to the vorticity
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Next, summing over i, using eq.(3) one obtains Lαβ

Lαβ =
∑

i

{
∑

στ

(
xiα

∂xiβ

∂ξσ
− xiβ

∂xiα

∂ξσ

)
C−1

στ πτ

+
∑

s

(
xiα

∂θs

∂xiβ

− xiβ
∂θs

∂xiα

)
(Πs −

∑

C<D

As,CDL
′
CD)

}
(22)

One explicite the first term in the r.h.s. of the above equation, using eqs.(1), (3),
the functional dependence of X,x′ and the constraint of fixed center-of-mass (4),
and definitions (16), (18)

∑

i

∑

στ

(
xiα

∂xiβ

∂ξσ
− xiβ

∂xiα

∂ξσ

)
C−1

στ πτ = RAαRBβL
′
AB (23)

In expliciting the second term from the r.h.s of eq.(21) one use the orthonor-
mation property of rotation matrices, i.e. RAαRBβ = δABδαβ and again (1)

∑

is

(
xiα

∂θs

∂xiβ
− xiβ

∂θs

∂xiα

)
(Πs −

∑

C<D

As,CDL
′
CD)

= RAαRBβ

∑

s

Θs,AB(Πs −
∑

As,CDL
′
CD)

where Θs,AB is the matrix element

Θs,AB = −Θs,BA =

(
x′iA

∂θs

∂xiβ
RBβ − x′iB

∂θs

∂xiα
RAα

)
(24)

Consequently the total angular momentum relative to the center-of-mass may be
written as

Lαβ = RAαRBβ

[
L′

AB +
∑

s

Θs,AB(Πs −
∑

C<D

As,CDL
′
CD)

]
(25)

Since the total angular momentum relative to the center-of-mass projected on the
body-fixed frame coordinates is related to the space-fixed one by

LAB = RAαRBβLαβ (26)

one obtains
LAB = L′

AB +
∑

s

Θs,AB(Πs −
∑

C<D

As,CDL
′
CD) (27)

In order to simplify this last equation one needs an orthogonality relation for the
matrices As,CD and Θs,AB. For that one multiply eqs(17) and (23) and sums over
s ∑

s

As,CDΘs,AB = δACδBD − δBCδAD (28)
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In deriving the above equation the orthogonality relation for the rotation matrices,
and eqs.(1) have been used. Using this last equation, then eq.(25) may be expressed
as follows

LAB =
∑

s

Θs,ABΠs (29)

Using the orthogonality condition (27), the eq.(28) may be inversed

Πs =
∑

A<B

As,ABLAB (30)

One thus arrive to the main task of the calculations: the expression for the mo-
mentum piα in terms of the new variables. Introducing (19) and (29) in (7) one
obtains

piα =
1

N
Pα +RAαp

′
iA +

∑

A<B

∂θs

∂iα
As,AB(LAB − L′

AB) (31)

In the third term of the r.h.s. of the eq.(30) one may replace (∂θs/∂iα)As,AB by
another matrix element

Miα,AB =
∑

s

∂θs

∂xiα

As,AB =
∂RAγ

∂xiα

RBγ (32)

and thus eq.(30) may be reexpressed as

piα =
1

N
Pα +

∑

A

RAαp
′
iA +

∑

A<B

Miα,Ĉ(LĈ − L′
Ĉ
) (33)

where LĈ ≡ LAB. One are also mentioning that the term RAαp
′
iA can be found in

the literature under the name of residual momentum [Weaver et al. 1976], as we
have mentioned earlier.

Further Villars [Villars 1957a,b] stated that the three terms occuring in eq.(30)
are orthogonal to each other. As we shall see later this is not quite true. For the
moment the kinetic energy is derived following closely the Villars’ treatment

It is obvious that the product between the center-of-mass canonical momenta,
the residual momenta RAαp

′
iA and the third term vanishes. The product between

the last two terms needs some manipulations
∑

iα

∑

A

RAαp
′
iA

∑

C<D

Miα,CD(LCD − L′
CD) = 0

since ∂RAγ/∂ξσ.
Thus Villars’ obtained that all the cross terms in the quadratic expression of

the kinetic energy vanish. Introducing tensor of inertial nature

QAB =
1

m

∑

iα

Miα,ÂMiα,B̂ (34)

and working out the rest of diagonal terms one obtains the canonical form of the
kinetic energy

T =
1

2m

∑

iα

p2
iα =

1

2mN

∑

α

P 2
α +

1

2m

∑

iA

p′
2
iA +

1

2

∑

AB

Q2
AB(LÂ−L′

Â
)(LB̂ −L′

B̂
) (35)
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In the case of a system with N interacting non-identical particles eq.(34) and (35)
are rewritten as follows

QAB =
∑

iα

1

mi
Miα,ÂMiα,B̂ (36)

T =
∑

iα

p2
iα

2mi
=

1

2M
~P 2 +

∑

iA

p′2iA
2mi

+
1

2

∑

AB

Q2
AB(LÂ − L′

Â
)(LB̂ − L′

B̂
) (37)

where M =
∑

imi

2.2 The inertia tensor for irrotational fluid motion

In order to find the expression of QAB - inverse inertia tensor - one must look for
the matrix elements Miα,Â,(B̂,Ĉ) which appear in eq.(33). Invoking the constraint
given by eq.(4), which specify that the body-fixed system is free of deviations
moments IAB = σx′iAx

′
iB one obtains by derivation with respect to xiα

∂

∂xiα

N∑

j=1

x′jAx
′
jB ≡ 0 =

∑

γ

∂RAγ

∂xiα

RBγ(IB − IA) + x′iBRAα + x′iARBα

One thus obtain for the matrix elements

Miα,AB ≡ ∂RAγ

∂xiα
RBγ =

x′iARBα + x′iBRAα

IA − IB
(38)

where IA,(B,C) are the diagonal inertia moments. Introducing now eq.(37) into
eq.(33) one get a diagonal form for the tensor QAB

QAA′ =
1

m

IB + IC
(IB − IC)2

, A = A′

0 , A 6= A′

Introducing the inertia tensor as the inverse of the tensor QAB one obtain a value
equivalent to Bohr’s result derived for the rotation and vibration of an irrotational
liquid drop IIF [Bohr 1952]

IA = m
(IB − IC)2

IB + IC
(39)

IB = m
(IC − IA)2

IC + IA
(40)

IC = m
(IA − IB)2

IA + IB
(41)

The Villar’s derivation of the irrotational flow moment IIF presented above is
rather microscopic. A detailed calculation of IIF in the frame of the phenomenolog-
ical rotation-vibration model(RVM) may be found in textbooks in nuclear structure
[Eisenberg and Greiner 1970a]. The advantage of the Villar’s derivation is that is
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exact. However the deduced moment of inertia IIF differs very much from ex-
perimental values. The reason seems transparent from the above considerations.
In the irrotational flow transformation, the kinetic energy not only separates into
a rotational and an intrinsic part but, as Villars shows, leads to a rather large
Coriolis coupling term LÂL

′
B̂(see the third term in eq.(34)). This coupling must

therefore be responsible for renormalizing IIF to generate the effective moment
of inertia given by the experiment. Thus, a strong rotational-intrinsic coupling is
fundamental to irrotational flow. Crudely speaking, one may visualize irrotational
flow as a deformation wave propagating over the surface of the nucleus, maintained
by a corresponding motion of the intrinsic structure so that it carries very small
angular momentum [Rowe 1970a,b]

2.3 The inertia tensor for rotational flow

To evaluate the expression of QAB, it is necessary to specify the constraints on the
intrinsic coordinates which define the nuclear orientation angles θs

According to Villar’s hypothesis

IAB =
∑

x′iAx
′
iB 6= 0, (A 6= B) (42)

i.e. the quadrupole mass-tensor is diagonal in the body-fixed frame. Consequently
one has obtained the irrotational flow inertia tensor IRR in contradiction with the
adiabatic rotor-model(ARM).

The ARM states the existence of bands of nuclear rotational states whose wave
functions satisfies the properties listed below:

1. ψJM = DJ
KMχ(ξ), states of the same rotational band are characterised by a

common intrinsic wave function

2. Jχ(ξ) = 0, i.e. the intrisic wave function carryes zero total angular momen-
tum

3. H = H0(ξ) + 1
2

∑
AB QAB(ξ)JAJB, is the adiabatic hamiltonian, where H0

and QAB operate on intrisic coordinates

4. Q(ξ) → 〈 χ(ξ) | Q̂(ξ) | χ(ξ) 〉, the inverse inertia tensor can be replaced by its
expectation over the common intrinsic wave function for a given rotational
band. This is consistent with (2), i.e. χ(ξ) is independent of J .

These properties are valid in the ”adiabatic approximation”, when the cen-
trifugal stretching are suppressed in zero order. This approximation is not very
good for odd rotational nuclei, because the odd particles are insuficiently bound
to the even core to give the combined structure of rigidity necessary to suppress
the centrifugal or other intrisic- rotational couplings(Coriolis terms in the Hamil-
tonian). For doubly even nuclei, for which Coriolis perturbations are not normally
entertained, the ARM works quite well.
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A question arise naturally. how does nuclei rotate in the ARM? Rowe attempted
to answer this question in the following manner: Transforming the wave function
given by property (1) by a rotation θ → θ′ one obtains:

ψJM → ψ′
JM(~r′i) = DJ

M(θ′)χ(ξ) = ψJM(~r′i) (43)

This transformation is generated by ~J since it operates only on DJ
M and conse-

quently the wave function transforms by simply rotating the spatial coordinates

xiα =
∑

RAαx
′
iA (44)

Thus in the absence of any coupling between the intrinsic and the rotational degrees
of freedom, the distatnces between particles are left invariant by the rotational
motion
∑

α

(xiα−xjα)2 =
∑

αAB

RAα(θs)RBα(θs)(x
′
iA−x′jA)(x′iB−x′jB) =

∑

α

(x′iA−x′jA)2 (45)

It then follows that the rotational motion of the zero-order ARM is rotational flow
or rigid − body flow. The only distinction between ordinary mechanical rigid
rotation and nuclear rotational flow is that in the second case the particles are not
frozen in position but are free to execute any independent motion in the intrinsic
coordinates.

Property (2) of the ARM express the necessity that the system has zero- angular
momentum relative to the body-fixed axes. Classicaly this is expressed by

~l′ =
∑

j

~r′j × ~p′j = 0 (46)

or expressing in differential constraints

∑

j

(x′jAδx
′
jB − x′jBδx

′
jA) = 0 (47)

It is important to notice that eq.(46) is a non-holonomic constraint which cannot
be integrated to give the θs in terms of the original particle coordinates. At this
important remark one shall come back latter, when talking the imposibility of
rigid-flow in quantum mechanics.

Since the differentials δx enter in the definition of rigid frames by means of the
formula

x′iA = x0
iA + δx′iA (48)

eq.(46) may be expressed again in the form

∑

j

(x′jAx
′
jB − x′jBx

′
jA) = 0 (49)

Using eq.(1) and (4) one get after a short calculation that
∑

j

(x′jAx
′
jB − x′jBx

′
jA) =

∑

jγ

(x′jARBγxjγ − x′jBRAγxjγ) = 0 (50)
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Differentiating this last expression with respect to θs′ , multiplying by ∂θs/∂xiα and
summing over s one obtains after a long but straightforward calculation that

∑

jγC

(x′jBx
′
jC

∂RAγ

∂xiα
RCγ − x′jAx

′
jC

∂RBγ

∂xiα
RCγ)

=
∑

jγs

(x′jARBγ − x′jBRAγ)
∂xjγ

∂θs

∂θs

∂xiα

Defining the inertia moments relative to the body-fixed axes(see eq.(37)) and using
the definition (33), the above equation will be rewritten in the following manner

∑

C

(IBCMiα,AC − IACMiα,BC) =
∑

jγs

(x′jARBγ − x′jBRAγ)
∂xjγ

∂θs

∂θs

∂xiα

(51)

This last equation is a mathematical identity and carries no information concerning
the character of the rotational and intrinsic coordinates. For rotational flow, this
information is contained in eq.(46). Since δx′jA(ξσ) = (∂x′jA/∂ξσ)δξσ, eq.(46) takes
the form

∑

j

(x′jA
∂x′jB
∂ξσ

− x′jB
∂x′jA
∂ξσ

) = 0 (52)

Substitution of eq.(2) in eq.(50) gives

∑

j

(x′jARBγ − x′jBRAγ)
∂xjγ

∂ξσ
= 0 (53)

Since
∑

j x
′
jA = 0 and ∂xjγ/∂Xα = δαγ there simply results that

∑

jγ

x′jARBγ
∂xjγ

∂Xα
= 0

which make possible the construction of the trivial equation

∑

jγ

(x′jARBγ − x′jBRAγ)
∂xjγ

∂Xα
= 0 (54)

Next, eq.(51) is multiplyied by ∂ξσ/∂xiα and summed over σ, whereas eq.(52) is
simply multiplyed by ∂Xα/∂xiα. Then both equations are added to the r.h.s. of
eq.(50) ∑

C

(IBCMiα,AC − IACMiα,BC) = (x′jARBα − x′iBRAα) (55)

In expanded form, by making cyclic permutation and using the fact that Miα,AA =
Miα,BB = Miα,CC = 0, this equation reads

−(IAA + IBB)Miα,AB + IACMiα,BC + IBCMiα,CA = x′iBRAα − x′iARBα (56)

ICAMiα,AB + (IBB − ICC)Miα,BC + IBAMiα,CA = −x′iCRBα − x′iBRCα(57)

−ICBMiα,AB − IABMiα,BC + (ICC + IAA)Miα,CA = x′iCRAα − x′iARCα (58)
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Defining the rigid-body inertia tensor IRR

IRR =



IBB + ICC −IAB −IAC

−IBA ICC + IAA −IBC

−ICA −ICB IAA + IBB


 (59)

eq.(55-57) may be written in the condensed form

ÎRRM̂iα = r̂′iAR̂α (60)

Next, one multiply each side of eq.(58) by its transpose, and sum over iα

∑

iα

IRR(Miα)(Miα)TIT
RR =

∑

iα

r′iA(Rα)(Rα)T r′
T
iA (61)

Since in the matrix form the inverse inertia tensor is

Q =
∑

iα

(Miα)(Miα)T (62)

and the rotation is orthogonal, i.e. RTR = I, eq.(59) becomes

IRRQIT
RR = IRR (63)

Multiplying (61) on the left and on the right with I−1, one obtains what was to
be expected, i.e. Q is the inverse of I.

The Coriolis coupling terms −L̂′
AL̂B,−L̂AL̂

′
B vanish for rotational flow coordi-

nates, thereby confirming the argument that the absence of intrinsic angular mo-
mentum and Coriolis coupling implies rotational flow. Invoking eq.(13),(18),(51)
one verify the above mentioned statement

L̂′
C =

∑

i

(x′iAp
′
iB − x′iBp

′
iA) =

∑

στ

∑

i

(
x′iA

∂x′iB
∂ξσ

− x′iB
∂x′iA
∂ξσ

)
(C−1)στπτ = 0 (64)

Therefore one can see eq.(51) as a constraint which ensure that the body-fixed
system carries no angular momentum. The kinetic energy then reads

T =
∑

iα

p2
iα

2mi
=

1

2M
~P 2 +

∑

iA

p′2iA
2mi

+
1

2

∑

AB

(I−1
RR)ABLÂLB̂ (65)

At first sight one should suppose that this canonical transformation demonstrates
that all many-body rotations must be rotational flow. In fact, there is still a
centrifugal rotational-intrinsic coupling coming from the dependence of the inertia
tensor IRR on the dynamic intrinsic coordinates. The above calculations show
that it is possible to choose an intrinsic coordinate system such that the Coriolis
coupling component in the kinetic energy vanishes.

For the motion to be rigid rotation it must be required that the deformed
nucleus have sufficient rigidity to suppress the effects of the centrifugal coupling
and to replace the inertia tensor by its expectation over the intrinsic wave function
(property 4 of the ARM which express the adiabaticity).
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2.4 The generalized Villar’s transformation

The most general real linear transformation on the Cartesian coordinates of the
n-th particle of a collection of N identical particles is given by [Weaver and Bieden-
harn 1972]

xiα =
3∑

a=1

g−1
αax

′′
iA, (a, α = 1, 3) (66)

where g−1 is the inverse of the real (3 × 3) matrix g. The set of matrices g with
nonzero determinant form the General Linear Group in the real three-dimensional
space GL(3,R), which will be presented in the next chapter. Its generators are
the six shear operators

tαβ =
N∑

i=1

(xiαpiβ + xiβpiα) (67)

and the three independent components of the total angular momentum tensor

Lαβ =
N∑

i=1

(xiαpiβ − xiβpiα) (68)

where piα is the momentum.
If x′′iα in (64) is held fixed and the nine parameters g−1

iα are considered to be
dynamic, the 3N degrees of freedom of the system reduce to these nine. The pa-
rameters g may be uniquely decomposed according to the Cartan decomposition
[Gantmacher 1953] g = SR, where S and R are respectively symmetric and or-
thogonal (3 × 3) real matrices. Furthermore, S can be diagonalized by means of
an orthogonal matrix so that one can write g = R′′S0R

′ where R′ and R′′ are two
different orthogonal matrices and S0 is diagonal. The decomposition can be made
unique by requiring

detR′ = detR′′ = 1, S02 ≥ S01 ≥ S03 ≥ 0 (69)

Recall the definition of the center-of-mass coordinates (eq.(3)) and allow the x′′iα
to depend on (3N −12) independent intrinsic coordinates ξσ in order to regain the
original 3N degrees of freedom. The complete transformation becomes

xiα = Xα +
3∑

A,a=1

R′
Aα(θs)S

−1
0AR

′′
Aa(φt)x

′′
ia(ξσ) (70)

where θs and φt are sets of Euler angles.
An appropriate choice of the generalized coordinates Xi, θs, S0A, and φt is made

by imposing 12 constraints on x′′nα. For the center-of-mass one have the usual three
constraints

N∑

i=1

xiA =
N∑

i=1

x′′ia (71)

where

xiA =
N∑

i=1

R′
Aα(xiα −Xα) (72)

14



and analogously

piA =
N∑

i=1

R′
Aα(piα − Pα) + p′iA (73)

The coordinates θs are chosen in the same manner as Villars (section 2.1) such
that the first rotation, R′, diagonalizes the mass tensor

N∑

i=1

mxiAxiB = δABm
N∑

i=1

x2
iA ≡ δABIA (74)

where m is the mass of a nucleon. Thus the three axes (ABC) coincide with
the principal axes. Next, the S0A are chosen by requiring a spherical quadrupole
distribution for the intrinsic system [Cusson 1968], i.e.

N∑

i=1

3∑

a,b=1

R′′
AaR

′′
Bbx

′′
iax

′′
ib ≡ δAB (75)

or equivalently
3∑

i=1

x′′iax
′′
ib ≡ δAB (76)

Combining (72) and (73), one have

S0A =

√
m

IA
(77)

One next generalize the constraint for rotational flow as used by Rowe [Rowe
1970b]

N∑

i=1

(x′′jaδx
′′
jb − x′′jbδx

′′
ja) = 0

and since δx′′ja = (∂x′′ja/∂ξσ)δξσ then (see eq.(51))

∑

j

(
x′′ja

∂x′′jb
∂ξσ

− x′′jb
∂x′′ja
∂ξσ

)
= 0 (78)

which are likewise nonintegrable except for the the trivial case of a frozen intrinsic
structure. In using eq.(76), one must therefore always be careful to remember that
the intrinsic axes (a, b, c) and hence the collective coordinates, φt, cannot, in gen-
eral, be defined in integrated form as functions of the particle coordinates. Only
the differentials δφt are strictly definable. This does not present any immediate
problem since the nonintegrable coordinates do not explicitely appear in the ex-
pansion of the kinetic energy. Thus, the coordinates φt, are cyclic. The use of the
nonintegrable but cyclic coordinates is a well known device in classical mechanics
[Goldstein 1959]. The nonintegrability question is discussed further.
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The transformed kinetic energy can be obtained ffrom either of the two expres-
sions derived in Appendix A.

The transformed momentum for the i-th particle is given by

piα ≡ −ih̄ ∂

∂xiα

= −ih̄
(
∂Xβ

∂xiα

∂

∂Xβ

+
∂θs

∂xiα

∂

∂θs

+
∂S0A

∂xiα

∂

∂S0A

+
∂φt

∂xiα

∂

∂φt

+
∂ξσ
∂xiα

∂

∂ξσ

)
(79)

Now using the definition (3) one have

−ih̄∂Xβ

∂xiα

∂

∂Xβ
= −ih̄

N
δαβ

∂

∂Xβ
≡ 1

N
Pα (80)

Noticing that

∂

∂θs

≡ ∂xiα

∂θs

∂

∂xiα

;
∂

∂φs

≡ ∂xiα

∂φt

∂

∂xiα

and using eqs.(68-71), then

−ih̄ ∂

∂θs

=
∑

iα

∂xiα

∂θs

piα =
∑

iαAB

∂R′
Aα

∂θs

R′
BαxiApiB (81)

and thus the second term in (77) reads

−ih̄∂xiα

∂θs

∂

∂θs
=

1

2
Miα,ABLAB (82)

where LAB and Miα,AB were defined earlier (see eqs.(18) and (33)). From (37) one
have that

Miα,AB =
xiAR

′
Bα + xiBR

′
Aα

IA − IB
= R′

Bα

∂R′
Aα

∂xiα
(83)

After some algebraic manipulations one obtains for the third term, following
the same reasoning

∂φt

∂xiα

∂

∂φt
= −1

2
Niα,ABLAB (84)

where

Niα,AB = R′′
Bα

∂R′′
Aα

∂xiα

= m

√
IA

IB

xiBR
′
Aα +

√
IB

IA

xiAR
′
Bα

IA − IB
(85)

and LAB are the rotation− distortion operators. They are defined by

LAB =

√
IB
IA
xiApiB −

√
IA
IB
xiBpiA (86)

and have vector components

LA ≡ 1

2
ǫabcLBC (87)
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Next using eq.(78), one get

−ih̄∂S0A

∂xiα

∂

∂S0A

= −ih̄ ∂IA
∂xiα

∂

∂IA
(88)

But since IA = m
∑

i x
2
iA

∂IA
∂xiα

= 2mxiAR
′
Aα (89)

Combining (86) and (87) one arrive at the result

−ih̄∂S0A

∂xiα
= −2ih̄mR′

AαxiA
∂

∂IA
(90)

Calculation of the last term in eq.(78) demands a lot of algebra and therefore one
simply list bellow the result

−ih̄ ∂ξσ
∂xiα

∂

∂ξσ
= −ih̄Cλσ−1

∂xiα

∂ξλ

∂

∂ξσ
(91)

where

Cλσ =
∂xjA

∂ξλ
· ∂xjA

∂ξσ
(92)

Therefore, inserting (78), (80), (82), (88) and (90) into (77) yields the transformed
momentum

piα =
1

N
Pα +R′

Aαp
′′
Aα + 2mR′

AαxiA(−ih̄ ∂

∂IA
) +

1

2
Miα,ABLAB − 1

2
Niα,ABLAB (93)

where

p′′Aα = C−1
σλ

∂x′iA
∂ξλ

(
−ih̄ ∂

∂ξσ

)
(94)

Note that the nonintegrable coordinate φt does not appear in (91) as can be seen
from (90). Furthermore, the opreator LAB which acts on φt, has a well defined
action on the particle coordinates, which will be discussed later. Thus, all the
components on the right-hand-side of (91) are well defined.

The transformed kineyic energy T , can now be obtained by squaring (91) [Gul-
shani and Rowe 1976]

T =
∑

iα

1

2m
p2

iα ≡ TC.M. + Tintr + Tcoll (95)

where

TC.M. ≡
1

2mN

∑

α

P 2
α (96)

Tintr ≡
1

2mN

∑

iA

p′′
2
iA (97)
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Tcoll ≡ Tvib + Trot

= = −2h̄2
∑

A

IA



 ∂
2

∂I2
A

+ (
N − 3

2IA
+
∑

B 6=A

1

IA − IB
)
∂

∂IA





+
1

2

∑

A<B

[
IA + IB

(IA − IB)2
(L2

AB + L2
AB) − 4

√
IAIB

(IA − IB)2
LABLAB

]
(98)

The expression for Trot in (96) is similar to that derived by Cusson [Cusson 1968]
where Tvib was absent. From a different point of view, Zickendraht [Zickendraht
1971] derived an expression similar to Tcoll but where the LAB were intrinsic quan-
tities such that Tcoll was strongly coupled to the intrinsic system. It is important
to stress out that in the above expansion, (93), the only coupling between Tcoll and
Tintr arises through the dependence of Cσλ on the collective coordinates. There
is no explicit dynamical coupling as was the case in the Zickendraht’s and Vil-
lars’s transformations. Similar expression has been given in [Dzyublik et al. 1972],
[Weaver et al. 1976] and [Rowe and Rosensteel 1978].

It is interesting to establish a relation between the Villar’s kinetic energy de-
rived in section 2.1 and the kinetic energy in eq.(93). In order to do this one must
first give a classical interpretation of the opeartors occuring in Villars’ transfor-
mation. Ignoring the center-of-mass motion, the Villars’ tarnsformation can be
written as

xiα = RAα(θs)xiA(ξσ) (99)

The Euler angles θs(s = 1, 2, 3) are chosen such that the axes (A,B,C) coincide
with the principal axes

mRAαRBβxiαxjβ ≡ δABmx
2
iA ≡ δABIA (100)

Differentiating (97) with respect to time one finds that the components of the
space-fixed velocities along the principal axes are given by

ẋiA ≡ RAαẋiα = RAα(ṘBβxiB +RBαẋiB) = ωBAxiB + ẋ′iB (101)

where the three angular momentum velocities ωAB of the principal axes (ABC)
are given by

ωAB = −ωBA = ṘAαRBα (A 6= B) (102)

Using (99), the total angular momentum components are

LAB = m(xiAẋiB − xiB ẋiA) = L′
AB + ωAB(IA + IB) (103)

where L′
AB is a component of the angular momentum relative to the principal axes

L′
AB = m(xiAẋ

′
iB − xiBẋ

′
iA) (104)

To express ωAB and L′
AB in terms of particle coordinates and momenta, and thereby

extend their definitions to quantum mechanics, one differentiate (98) with respect
to time and obtain

d

dt
(mRAαRBβxiαxjβ) = 0 (105)
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Using the definition (67) for the shear operators one derive

ωAB =
1

IA − IB
tAB (A 6= B) (106)

where the single-particle momentum is defined as

piA = mẋiA (107)

Combining (91) and (94), one obtains

L′
AB = LAB − ωAB

IA + IB
IA − IB

tAB = −2
√
IAIB

IA − IB

(√
IB
IA
xiApiB +

√
IA
IB
xiBpiA

)
(108)

The expression (66) in terms of momenta rather than velocities, are valid both

in classical and quantum mechanics. However, whereas in classical mechanics ~L′

has the significance of the relative angular momentum of the system as seen by
an observer moving with the principal coordinate axis (body-fixed), it does not
have the structure of an angular momentum operator in quantum mechanics; i.e.
its components do not form a closed SU(2) algebra. It is convenient therefore, to

express ~L′ in terms of the angular momentum L (vorticity) whose components are
given in (84). Equation (106) can then be simply manipulated into the form

L′
AB =

4IAIB
(IA − IB)2

[
IA + IB
2
√
IAIB

LAB − LAB

]
, (A 6= B) (109)

Likewise the shear operators tAB can be expressed

tAB =
IA + IB
IA − IB

(
LAB − 2

√
IAIB

IAIB
LAB

)
, (A 6= B) (110)

Note that eqs.(106-108) are all valid both in classical and quantum mechanics.
Corresponding expressions for the classical angular velocity can be obtained by
replacing tAB by (IA − IB)ωAB according to (104). From (96), one then obtain

ωAB =
LAB − L′

AB

IA − IB
, (A 6= B) (111)

and from (107)

ωAB =
IA + IB
IA − IB

[
LAB − 2

√
IAIB

IA + IB
LAB

]
(112)

Now one can establish the connection between the intrinsic angulat momentum
~L′ occuring in the Villars’ treatment and the vorticity. From the above considera-
tions one have that

L
(V illars)
AB = LAB = xiApiB − xiBpiA = RAαRBβLαLβ (113)
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and comparing the Villars’ expression for the rotational kinetic energy from (34)

T
(V illars)
rot =

1

2

∑

A<B

IA + IB
(IA − IB)2

(LAB
(V illars) − L′

AB
(V illars)

)
2

(114)

with the rotational part of (96)

Trot =
1

2

∑

A<B

IA + IB
(IA − IB)2

(
L2

AB − 4
√
IAIB

IA + IB
LABLAB + L2

AB

)

and using (B.11) from App.B

L′
AB

V illars
=

2
√
IAIB

IA + IB
LAB

one finds that T
(V illars)
rot contains terms in L2

AB and LABLAB which are identical to
those in Trot, but that it differs by a term in LAB

Trot = T
(V illars)
rot +

1

2

∑

A<B

(
√
IA +

√
IB)2

(IA − IB)2
L2

AB (115)

This is not surprising since, in Villars’ classical case, LAB operates on intrinsic
coordinates and the extra term is contained in Tintr. The important point, however
is that whereas in Villars’ case the term in LABLAB effects a dynamical coupling
of the intrinsic and collective degrees of freedom, in the generalized case [Gulshani
and Rowe 1976] it is a purely collective operator.
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3 ALGEBRAIC APPROACH TO NUCLEAR COL-

LECTIVE ROTATIONAL-VIBRATIONAL MO-

TION

3.1 Dynamical symmetry of rotating systems

The solution to two physics problems from the theory of rotational states in atomic
nuclei require Lie Group methods:

• What is the shape of a deformed nucleus and how does it rotate?

• What is the fundamental microscopic physics underlying macroscopic nuclear
models?

The first question, an important unsolved basic science problem in nuclear struc-
ture physics, is pure kinematics. The precise quantitative formulation of this ques-
tion is phrased in terms of Casimir invariants of certain subalgebra of the non-
compact symplectic algebra Sp(3,R), [Rosensteel 1992a,b].

The second question is pure theory. The fundamental theory of nuclei, i.e.,
of many-body systems of strongly interacting neutrons and protons, is the shell-
model. However, useful macroscopic models ignore the shell structure of the nu-
cleus and considere it to be a rotating fluid droplet. The relationship betwen these
two seemingly incompatible theoretical approaches to nuclear structure is sim-
ply the connection between the reducible representations on the Hilbert Space of
square integrable functions L2(R3A) of various subalgebra chains of the symplectic
algebra and their irreducible representations.

The real symplectic algebra, as represented on L2(R3A) consists of all hermitian
one-body operators that are quadratic in the space and/or momentum operators
[Rowe 1985], [Rosensteel and Rowe 1985]. A basis for this 21-dimensional noncom-
pact algebra is furnished by the shear tensor Nij , and the symmetric inertia tensor
Qij and kinetic Tij tensors, where i, j index the cartesian axes x, y, z and

Nij =
∑

α

xαipαj (116)

Qij =
∑

α

xαixαj (117)

Tij =
∑

α

pαipαj (118)

The sums are performed over the particle index α = 1, 2, ..., A. The kinetic and
inertia tensors each span abelian subalgebras isomorphic to R6. The Nij span the
Lie algebra of the linear motion group, GL(3,R). One show bellow the two princi-
pal Sp(3,R) subalgebra chains that terminate with the orbital angular momentum
subalgebra SO(3).

The collective model chain passes through the general collective motion algebra
GCM(3) and the rotational algebra ROT (3). The shell model chain traverses
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Collective Model Chain Shell Model Chain

Phonon

Elliot

Sp U

SU 

GCM

ROT

SO

(3)

(3)

(3)

(3)

GL(3)

(3)(3)

contraction

contraction

the symmetry algebra of the isotropic harmonic oscillator SU(3). The defining
generators for each of these subalgebras are as follows:

SO(3) := spanRi(N −N+)ij

GL(3) := SO(3) ⊕ spanRi(N +N+)ij

GCM(3) := GL(3) ⊕ spanRQij

SU(3) := SO(3) ⊕ spanR(Q(2) + T (2))ij

where ⊕ denotes vector space direct sum and rank 2 tensors are formed from the
traceless part of the corresponding operators, for example, the mass quadrupole
operator is

Q
(2)
ij = Qij − δijtr(Q)/3 =

∑

α

(xαixαj − δijr
2
α/3)

The subalgebras in the geometrical model chain are essentially kinematical in
origin. SO(3) and GL(3) are Lie algebras of motion (dynamic) group acting on
three-dimensional Euclidean space. ROT (3) and GCM(3) add the inertia tensor
to the corresponding Lie algebras of the motion groups SO(3) and GL(3). But,
the inertia tensor measures the spatial extension and deformation of a body, since
its eigenvalues are the principal moments of the inertia ellipsoid. Thus, ROT (3)
and GCM(3) are kinematical algebras too.

The shell-model chain provides a dynamical component to the theory via the
harmonic oscillator Hamiltonian H0 = (tr(T ) + tr(Q))/2 =

∑
α(p2

α + x2
α)/2 and

its symmetry algebra SU(3). Transformations from the shell model chain to the
geometrical model chain provide a kinematical interpretation to shell model config-
urations. As every body know Elliot’s model SU(3) gives quasi-rotational bands
which approach those of the rotor model in the limit of large-dimensional rep-
resentations(contraction to ROT (3)). There is the problem that SU(3) states
needs to be renormalized by coupling to higher shells to get B(E2) transitions up
to observed values. Generalizing the SU(3) model to the symplectic model one
get symplectic states that are shell model configurations and eigenstates of the
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Harmonic Oscillator Hamiltonian H0 carrying good Elliot SU(3) symmetry (λ, µ)
[Talmi 1993].

Thus, the shell model chain provides the connection with microscopic fermion
physics and it enables detailed shell model calculations to be performed for geomet-
rical collective states. From the view point of this chain, the symplectic model is an
extension of the conventional oscillator shell model that goes beyond single major
shells to include the np − nh coherent admixtures required to build quadrupole
and monopole colectivity.

3.2 ROT (3)-the dynamical symmetry of the rigid rotator

The concept of a body with a non-spherical shape presupposes that this shape is
in some sense measurable. This, in turn, requires - by the uncertainty relations for
the angular momentum - that infinitely many angular momenta are necesarily in
order to specify the shape. If the shape of the body is rigid, these angular momenta
must not dynamically affect the shape being mesured, so that the shape can be
considered as fixed over the entire range of energy. In order that the shape is
measurable in quantum mechanical framework, there must exist a set of quantum
mechanical operators associated with the shape of the body. The eigenvalues of
these operators will correspond to the result of measurement of the shape.

From the above consideration, it is clear that these shape operators does not
commute with the angular momentum operators nor even with the Hamiltonian of
the system. Therefore, the shape operators cannot be generators of any symmetry
groups of the system, but rather constitute those of the dynamical group. If any
of the shape operators does not commute with each other, it is then impossible
to diagonalize these operators simultaneously. This implies that the shape cannot
accurately be determined without uncertainty in this case. Thus, it is natural to
define the concept of the rigid shape as being the condition that the quantum me-
chanical operators associated with the shape can be simultaneously diagonalized.
In other words, the shape may be called quantum mechanically rigid, if and
only if the non-spherical shape is in principle measurable without any quantum
mechanical uncertainties[Ui 1970].

As the quantum mechanical shape operators are taken the mass multipole oper-
ators which may be obtained from the density distribution of the body in the usual
way. Then, for a quadratically deformed shape such as the symmetric and asym-
metric tops, the five components of the (mass) quadrupole moment are sufficient
to define the shape.

In order to have a rigid shape, every component of the operator must commute
with each other. Since the quadrupole moment transforms as an irreducible tensor
of rank 2 under rotation of ordinary space, the commutation relation are needful.
Take the quadrupole moment as

Q(2)
µ =

∑

α

r2
αY2µ(θα, φα) (119)
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Since for an arbitrary irreducible tensor of rank λ the following relations are valide
[Rose 1957]

[L±1, Qλµ] =
√

(λ∓ µ)(λ± µ+ 1)Qλµ±1 (120)

[Lz, Qλµ] = µQλµ (121)

where L1ν(ν = 0,±1) are the spherical components of the angular momentum,
then replacing Qλµ by Q2

µ and using the commutation relations for the SO(3)
algebra of the angular momentum one obtains the following set of commutation
relations for the ROT (3) algebra

[Lz, L±] = ±L±, [L+, L−] = 2Lz, (122)

[Lz , Q
(2)
µ ] = µQ(2)

µ , [L±, Q
(2)
µ ] =

√
(2 ∓ µ)(3 ± µ)Q

(2)
µ±1 (123)

and
[Q(2)

µ , Q
(2)
µ′ ] = 0 (124)

Therefore the rotational algebraROT (3) is spanned by the one-body quadrupole
operator Q(2)

µ plus the angular momentum algebra SO(3). In its quantum reali-
sation ROT (3) is the adiabatic roational model [Ui 1970], [Weaver et al. 1973],
while, in its classical realisation ROT (3) is the Euler rigid body model [Corben
1968]. This Lie algebra defines an eight- parameter {L0, L±1, Q±2

(2), Q±1
(2), Q0}

noncompact Lie group with semidirect product structure. On the other hand, the
well known Lie algebra of the SU(3) group is expressed in Racah’s spherical basis
as [Eisenberg & Greiner 1970c]

[Lz, L±] = ±L±, [L+, L−] = 2Lz (125)

[Lz, Q
(c)
µ ] = µQ(c)

µ , [L±, Q
(c)
µ ] =

√
(2 ∓ µ)(3 ± µ)Q

(c)
µ±1 (126)

[Qc
µ, Q

(c)
µ′ ] = 3

√
10 C2 2 1

µ µ′ µ+µ′Lµ±µ′ (127)

where
Q(c)

µ = Q(2)
µ (r̂) +Q(2)

µ (p̂) (128)

Therefore eqs.(119-121) can be obtained from eqs.(122-124) by the procedure
[Gilmore 1974], [Barut and Raczka 1977] of contraction: first, put Q(c)

µ and next,
take the limit ǫ→ 0 keeping Tµ finite and thus

[Tµ, Tµ′ ] = ǫ2[Q(c)
µ , Q

(c)
µ′ ] = O(ǫ2) ≈ 0 (129)

The Casimir invariants of ROT (3) can be obtained from the casimir operators
[Wybourne 1974] of the SU(3) group

C2 = (L̂× L̂) +
1

3
(Q̂(2) · Q̂(2)) (130)

C3 = [Q̂(2) × Q̂(2) × Q̂(2)]
(0)
0 + 3

√
3

7
[Q̂(2) × L̂× L̂]

(0)
0 (131)
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by the Wigner procedure of contraction above mentioned

C2 =
∑

µ

C2 2 0
µ−µ′ 0Q

(2)
µ Q

(2)
−µ (132)

and
C3 =

∑

µ1µ2µ3

C 2 2 2
µ1 µ2 µ2

C 2 2 0
µ3 −µ3 0 Q

(2)
µ1
Q(2)

µ2
Q

(2)
−µ3

(133)

3.3 The group of linear collective flows SL(3,R)

One finds a more interesting algebraic structure if one consider in addition the
time derivatives of the quadrupole moment

Q̇(2)
µ =

i

h̄
[H,Q(2)

µ ] (134)

where H is the Hamiltonian. If the potential energy is velocity independent (or
more precisely to be not of spin-orbit type)then

Q̇
(2)
ij =

∑

α

(xαipαj + xαj)pαi −
2

3
δijrαpα = S

(2)
ij (135)

is called the shear momentum.
The commutator of two Sij

(2) is an orbital angular momentum, e.g.

[Sij, Skl] = −ih̄(δjlLik + δilLjk + δjkLli + δikLjl) (136)

where
Lij =

∑

α

(xαipαj + xαjpαi) (137)

is the angular momentum operator. The commutator of the angular momentum
and the shear operator is

[Sij , Lkl] = −ih̄(δjlSik + δilSjk + δjkSli + δikSjl) (138)

Since the Lij spans the subalgebra SU(3) one are then lead to the conclusion that
the five Sij and three Li generate the SL(3) algebra. The essential commutation
rules basis are

[L0, L±] = ±L±, [L+, L−] = 2L0, [L0, Sµ] = µSµ (139)

[L±, Sµ] =
√

(6 − µ(µ± 1))Sµ±1, [Sµ, S−µ] = −4L0 (140)

where eqs.(117) and (118) have been used.
To explore the physical consequence of the above commutation relations one

make the following assumptions:

• The time derivatives of the mass quadrupole operator of the nucleus generate
the algebra of SL(3,R)
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• The electric quadrupole moment is proportional to the mass quadrupole mo-
ment

• The states of the nucleus form a basis for one irreducible unitary represen-
tation of SL(3).

SL(3,R) is a non-compact group. This means that the group volume is
infinite. To see this consider the realisation of an element of SL(3,R) by
a 3 × 3 real matrix with unit determinant. The entries in this matrix are
bounded-they may range between −∞ and +∞.

3.4 The rotational-vibrational collective motion group CM(3)

The CM(3) model has its counterpart in the classical Riemann model of rotating
fluids [Chandrasekhar 1968]. It is the extension of the motion group of ROT (3)
from SO(3) to the group of linear transformations SL(3) and incorporating the
monopole operator

∑
α rα

2. The resulting Lie algebra CM(3) allows for the conti-
nous range of rotational dynamics from rigid rotation to irrotational flow [Cusson
1968], [Weaver, Cusson and Bidenharn 1976], [Rosensteel and Rowe 1976]. Thus
the CM(3) is obtained by adjoining the 6 quadrupole moments Qij to the genera-
tors Lij and Sij of SL(3). The condition of trace zero may be relaxed temporary.

The first who pointed out the existence of this symmetry was Tomonaga [Tomon-
aga 1955]. For an irrotational displacement of a system of particles in an incom-
pressible fluid the velocity field can be derived from a potential Φ which satisfies
the Laplace equation

∆Φ = 0 (141)

such that
~v = ∇Φ (142)

The infinitesimal displacement of a particle at the position (x, y) is then given by

δxα = ǫ
∂Φ(xα, yα)

xα

(143)

δyα = ǫ
∂Φ(xα, yα)

yα
(144)

Integrating the Laplace equation one obtain for example the quadrupole potential

Φ1 =
1

2
(x2 + y2) (145)

which gives

xα =
∂Φ(xα, yα)

xα

(146)

yα = −∂Φ(xα, yα)

yα
(147)

26



Substituting these last two equations into eqs.(141-142) one get

x′α = (1 + ǫ)xα (148)

y′α = (1 − ǫ)yα (149)

Associated to this transformation one have the infinitesimal generator [Wybourne
1974]

X1 = xα
∂

∂xα

− yα
∂

∂yα

(150)

Integrating again the Laplace equation one get

Φ2 = xy (151)

which gives after the same algebra manipulations

X2 = xα
∂

∂yα

+ yα
∂

∂xα

(152)

One thus obtain the two generators of the two-dimensional quadrupole irrotational
flow

P1 =
∑

α

xαPxα − yαPyα (153)

P2 =
∑

α

xαPxα + yαPyα (154)

They generate together with the angular momentum the algebra SL(2) = SO(2)⊕
spanR{P1 + P2} = spanR{Lz, P1, P2} and satisfies the commutation relations

[P1, P2] = 2ih̄Lz, [P2, Lz] = −2ih̄P1, [Lz, P1] = −2ih̄Lz (155)

Therefore if the system is initially described by a representation of SL(2, R) these
motions will not carry the system outside the representation. According to Tomon-
aga procedure, considering the momenta P1 and P2, one look for the conjugate
coordinates Q1 and Q2

Q1 =
1

2

∑

α

(x2
α − y2

α) (156)

Q2 =
∑

α

xαyα (157)

Commuting with the generators of SL(2, R) algebra one gets

[P1, Q2] = 0, [P2, Q1] = 0, [P1, Q1] = −ih̄R2, [P2, Q2] = −ih̄R2 (158)

where
R2 =

∑

α

(x2
α + y2

α)
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Thus (Pα, Qα) does not form a conjugate couple. However Tomonaga stressed that
if the system is large enough the fluctuations in R2 are small, i.e. R2 ≈ R0

2 is a c-
number. If not one obtains the closed algebra CM(2) = SL(2,R)⊕ {Q1, Q2, R

2}.
In the limit case one obtains the contraction of CM(2): Introducing the scaled
momenta Π2 = Pα/R

2
0, the commutation relations becomes[Weaver 1980]:

[Πα, Qβ] =
1

R0
2 [Pα, Qβ] ≈ −ih̄δαβ, [Πα,Πβ] = [Qα, Qβ] = 0 (159)

and one concludes that for a system with small fluctuations and with large R2
0,

truly canonical coordinates and momenta emerge to the generators of Heisenberg-
Weyl W [Weyl 1931].
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4 QUANTUM MECHANICS TREATMENT OF

FLOWS IN ROTATING FRAMES

4.1 The Hamiltonian in a rotating system

Let H0 be the Hamiltonian in the stationary frame (laboratory fixed) and

j3 =
∑

i

(xipyi − yipxi) (160)

the angular momentum of the system about the axes of rotation, which one take
to be the z-axis. The Hamiltonian in the rotating frame is given by

H = H0 − λj3 (161)

This hamiltonian can be derived in several ways, each of which gives different
insights.

In the Inglis cranking model H0 is an independent-particel Hamiltonian

H0 =
1

2m
p2 + V0(~r) (162)

where
~r(t) = R̂(ωt) · ~r (163)

with R̂ an orthogonal rotation matrix. By a transformation to rotating coordi-
nates, one derives the Hamiltonian.

Alternatively, one may seek a time-dependent solution to the Schroedinger
equation

H(t)ψ(t) = (e−iωtj3/h̄H0e
iωtj3/h̄)ψ(t) = −ih̄∂ψ(t)

∂t
(164)

which is stationary in the rotating frame. This done by writting the wave function

ψ(t) = e−iωtj3/h̄φ(t) (165)

so that φt is a solution of the wave function

(H0 − ωj3)φ(t) = ih̄
∂φ(t)

∂t
(166)

The requirement that ψ(t) should be stationary in the rotating frame implies that
φ(t) must be an eigenstate of H0 − ωj3.

Finally a more fundamental derivation reveals that H = H0 −ωj3 is in fact the
hamiltonian for the system in the rotating frame and that −ωj3 is just the term
needed to include the effects of the centrifugal and the Coriolis force. To derive the
hamiltonian one resort to the textbook [Goldstein 1959]. The initial step consists
in relating the velocities of a particle relative to the space ~vs and rotating ~vr set of
axes respectively

~vs = ~vr + ~ω × ~r (167)
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Analogously the time rate of change of ~vs is

(
d~vs

dt
)s ≡ ~as = (

d~vs

dt
)r + ~ω × ~vs = ~ar + 2(~ω × ~r) + ~ω × (~ω × ~r) (168)

where

~ar =
d~vr

dt
(169)

Finally, the equation of motion, which in the inertial system is simply

~F = m~as (170)

expands, when expressed in the rotating coordinates, into the equation

~F = m[~ar + 2(~ω × ~vr) + ~ω × (~ω × ~r)] (171)

To an observer situated in the rotating system it therefore appears as if the particle
is moving under the influence of an effective force ~Feff . If ~F derives from a potential
V0 then

~Feff = −∇V0 − 2m(~ω × ~vr) −m~ω × (~ω × ~r) (172)

In order to derive the Hamiltonian from ~Feff in a frame rotating with angular

velocity ~ω, one must first be able to derive ~Feff like ~F = −∇V0 from a potential.

The centrifugal term in ~F can be obtained from the gradient of the centrifugal
potential

Ucf = −1

2
~ω · IRR · ~ω (173)

where the rigid-body tensor has components

(IRR)ij ≡ m (δijr
2 − rirj) (174)

The Coriolis force, however, cannot be derived from the gradient of a potential.
It can, however, be derived from a generalized potential in exact analogy with the
magnetic fiels force. A constant magnetic field ~B can be related to the magnetic
vector potential ~A through the expression

~A =
~B × ~r

2
(175)

The magnetic force

~Fmag = −q
c
~B × ~v =

q

c
∇(~v · ~A) = −∇(

q

2c
~v · ( ~B × ~r)) (176)

then admits a generalized potential [Goldstein 1959]

Vmag = − q

2c
~v · ( ~B × ~r) (177)
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giving the correct equations of motions when used in the lagrangian. One thus
established an analogy between the Lorentz and Coriolis potentials. Similarily,
then, we can define for the Coriolis term in ~F the generalized potential

Vcor = −m~v · (~ω × ~r) (178)

The total potential for the system in the rotating system is then

Ueff = V0 −
1

2
~ω · IRR · ~ω −m~v · (~ω × ~r) (179)

Introducing the Lagrangian

L =
1

2
mv2 − Ueff (180)

one obtains the canonical momentum

~p ≡ ~∇~vL = m(~v + ~ω × ~r) (181)

and finally the Hamiltonian

H = ~v · ~p− L =
1

2m
(~p−mω × ~r)2 + V0 −

1

2
~ω · IRR · ~ω = H0 − ωj3 (182)

One observes that the Coriolis potential does not appear in the Hamiltonian, which
is as it should be since the Coriolis force does not work and cannot contribute di-
rectly to the energy of a particle. It does, however, affect the trajectory of the
classical motion as it enters into the equations of motion through the canonical
momentum.

4.2 Rigid flow and non-integrable phases in quantum me-

chanics

In the cranking model one computes the wave function | φ 〉 in the rotating frame
to first order in ω in using perturbation theory. One then defines the mean inertial
parameter I and the energy increment ∆E by

ωI = 〈 ψ(t) | j3 | ψ(t) 〉 (183)

∆E = 〈 ψ(t) | H(t) | ψ(t) 〉 − 〈 φ0 | H0 | φ0 〉 (184)

where | φ0 〉 ≡ | φ(ω = 0) 〉. for the anisotropic oscillator and under the conditions
of self-consistency it is well known that

〈 φ | j3 | φ 〉 = ω IRR (185)

and

∆E =
1

2
ω2IRR (186)
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One might thereby conjecture that the current flows might also be rigid. Indeed, as
will be see later, it is even possible to derive a cranking model wave function that
gives precisely rigid-flow currents. However, one can do so only at the expenses of
departing from the conventional requirement of quantum mechanics that the wave
function be a well-defined single-valued function on the configuration space.

Since the Schroedinger equation

H| φ 〉 =
[

1

2m
(~p−mω × ~r)2 + V0 −

1

2
~ω · IRR · ~ω

]
| φ 〉 = E| φ 〉 (187)

of the cranking model is gauge invariant, one can make the gauge transformation

φ(~r) = exp
(

i

h̄m
S(~r)

)
φ′(~r) (188)

to obtain

[
1

2m
(~p−mω × ~r +m∇S)2 + V0 −

1

2
ωIRRω]| φ′ 〉 = E| φ′ 〉 (189)

and
〈 φ | j3 | φ 〉 = ω 〈 φ′ | ÎRR | φ′ 〉 ≡ ω 〈 φ0 | ÎRR | φ0 〉 (190)

where it was assumed that 〈 φ′ | j3 | φ′ 〉 = 0. Similarly the energy increment
becomes

∆E =
1

2
ω2 〈 φ0 | ÎRR | φ0 〉 + 〈 φ′ | H0 | φ′ 〉 − 〈 φ0 | H0 | φ0 〉 (191)

which is the rigid flow kinetic energy plus the energy increment induced by cen-
trifugal stretching. The current density, defined at time t = 0 by

~J(~r) ≡ 〈 φ | Ĵ(~r) | φ 〉 (192)

where

Ĵ(~r) ≡ 1

2m
[δ(~r − ~r′) ~p+ ~p δ(~r − ~r′)] (193)

becomes

~J(~r) = 〈 φ′ | e− im

h̄
S 1

2m
[δ(~r − ~r′)~p+ ~pδ(~r − ~r′)]e

im

h̄
S | φ 〉 = |φ′(~r)|2∇S(~r) (194)

In order to take into account the entire effect of the Coriolis term one choose the
phase function such that

~J(~r) = |φ′(~r)|2(~ω × ~r) (195)

Thus, without any conditions of self-consistency, one obtain rigid- flow results for
any potantial V0. However for a quantal fluid the above analysis is unacceptable
because ∇S = ~ω × ~r and then

∇×∇S = ∇× (~ω × ~r) = 2~ω (196)
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It means that the Schwartz condition is not fulfiled

∂2S

∂x∂y
= +ω = 6= ∂2S

∂y∂x
= −ω (197)

and thus S(~r) is not integrable. In other words, the integrale

S(~r) =
∫

(~ω × ~r′)d~r′ (198)

is path dependent, implying that the wave function φ(~r) defined by the gauge
transformation is not single valued. In this context, recall the discussion in section
2.3 and 2.4 about the integrability of rotational collective coordiantes [Rowe 1970],
[Gulshani and Rowe 1976,1977a,b].

It is important to point out that the current is not of the rigid flow type when
the moment of inertia is assumed to take the rigid-body value.

4.3 The vortex flow of a single-particle fluid

For an arbitrary single-particle wave function ψ = u+ iv one can define the current

~J(~r) =
1

2mi
[ψ∗(~r)~pψ(~r) − ~pψ∗(~r)ψ(~r)] (199)

and the velocity field

~v(~r) ≡ 1

ρ(~r)
~J(~r) (200)

where the density ρ(~r) ≡ |ψ|2 = u2 + v2. The field velocity ~v(~r) is well defined at
all poinrs where ψ = 0. Now it is easy to show that at such points

∇× ~v = (∇1

ρ
) × ~J +

1

ρ
∇× ~J (201)

This result indicates that the velocity-flow of any single-particle fluid is irrota-
tional whenever the wave function does not vanish. This is a familiar result in the
fluid dynamical description of a single-particle wave function [Landau and Lifschits
1967], [Kan and Griffin 1977,1978], [Gulshani and Rowe 1977a,b] where it is seen
to be a simple consequence of the fact that ψ(~r) can be written in the polar form

ψ(~r) = χ(~r) exp[
im

h̄
S(~r)] (202)

χ and S are defined as the smooth functions satisfying the equations

ρ2(~r) = χ2 = u2 + v2, tg
m

h̄
S =

v

u
(203)

at all points at which ψ(~r) does not vanish. Thus it follows that

~J(~r) = ρ2(~r)∇S(~r) (204)
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The field velocity is now given by

~v(~r) = ∇S =
h̄

m

u∇v − v∇u
u2 + v2

(205)

Since ~J = ρ = 0 at points where ψ(~r) = 0, it follows that at these points ~v(~r) = ∇S
is not defined. However, at such points the current circulation defined by

∇× ~J = 2χ∇χ×∇S =
2h̄

m
∇u×∇v (206)

does not necesarily vanish. The non-vanishing current circulations at these points
may then be interpreted as velocity vortices [Kan and Griffin 1977].

From eq.(202) one sees that ~v(~r), which is an irrotational velocity field can
become singular only when χ(and hence ψ, or u and v) go to zero. This happens,
for example, when the nodal surfaces of u intersect the nodal surfaces v. Then ψ
is zero on the lines of intersection. This leads to line singularities in ~v(~r). S which
is a multivalued function can be made single valued on the principal branch of
arctan, i.e. −π

2
≤ arg(arctan) ≤ π

2
. With this choice, terms involving the Heaviside

function are introduced in order to satisfy the convention that χ in eq.(199) be
positive. From eq.(200) then

S =
h̄

m
(arctan

v

u
+ πθ(u)) (207)

where θ(x) describes a unit jump discontinuity at x = 0.
Consider the line integral of ~v(~r) along a closed path Γ in space. Assume that

on Γ, ~v(~r) has no singularity. Since ~v = ∇S, such that a closed line integral is
equal to the sum of discontinuities which S may posses along Γ. As noted above
in eq.(204), discontinuities of S must have value magnitude 2πh̄/m. This implies
that any closed line integral of ~v(~r) is quantized and

∮
~v(~r)d~l =

2nπh̄

m
(208)

where n is an integer. This quantization condition for circulation is well known[Kan
and Griffin 1977]. When Γ encircles no singularities of ~v(~r), one must have n = 0
because the left-handside is evidently zero according to Stokes theorem:

∮
~v(~r)d~l =

∫
∇× ~v(~r)d~s = 0 (209)

When Γ encircles a line of singularities of ~v(~r), the line integral (205) is generally
nonzero. Then, if one let the dimension of Γ go to zero, one conclude that ~v(~r)
must have an unbounded curl(vorticity) on the line of singularity, which, as one
alrady noted, is also the nodal line of ψ. Following the terminology of classical
fluid dynamics one denote such a line of singularity of vorticity distribution as a
line of vortex [Batchelor 1967].
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Figure 2: Relationship between a line vortex and the nodal surfaces of the real
part u and the imaginary part v of the wave function. Unit vectors â and b̂ are
the normals of the u node and v mode. The line vortex is along the polar axis k,
which is pointing perpendicular outwards from the page.

It is worthwhile to make an anlogy with the dislocation theory in solids. From
macroscopic point of view, the deformation generated by the dislocations in a
continuum, posses in the general case the following property: when describing a
closed path Γ around a line of dislocation D, the vector ~u of elastic displacement
performs a determined finite increasement ~b equal in magnitude and direction with
one of the lattice periods. The constant vector ~b is called Burgers vector of the
given dislocation. This property can be expressed [Landau and Lifschits 1990]

∮

Γ
dui =

∮

Γ

∂ui

∂xk
dxk = −bi (210)

The dislocation line represent the line of singularities of the deformed field. The
two ends of these line must be at the surface of the crystal or must be joined on a
closed loop.

Consider now a region in which a nodal surface of u intersects a nodal surface
of v. Choose an arbitrary point P along such a nodal line of ψ and consider the
irrotational velocity ~v = ∇S near this point. let ~r be the position vector measured
with respect to this point.

Consider first the simplest situation where both u and v vary linearly within a
small neighborhood of P , i.e.

u(~r) ∼= ∇u|r=0 · ~r = ~a · ~r (211)
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and
v(~r) ∼= ∇v|r=0 · ~r = ~b · ~r (212)

From eq.(205) one obtains

~v(~r) =
h̄

m

u(~r)∇v(~r) − v(~r)∇u(~r)
u2 + v2

∼= h̄

m

~r × (~b× ~r)

(~a · ~r)2 + (~b · ~r)2
(213)

Let the z-direction ~k be the direction ~a×~b. The normals ~a and ~b then lie in the
xy-plane. Let the azimuthal angles of ~a and ~b be ϕa and ϕb, respectively. Equation
(210) then becomes

~v(~r) ∼= h̄

m
g(θ, ϕ)

~k × ~r

r
(214)

From the last equation, one sees that the irrotational velocity field ~v(~r) has the
following two properties:

• ~v varies as r−1 for r → 0. hence, the irrotational field is singular on the nodal
lines of ψ.

• since ~v ‖ ~k×~r, the stream lines(lines in the fluid whose tangent is everywhere
in the direction of the velocity field of the fluid) of ~v are circles lying in the
planes perpendicular to and centered upon the nodal lines. The sense of
circulation of ~v is about the nodal lines throughout any part of a stream line.

A familiar example of the velocity field [Milne-Thompson 1960], [Batchelor
1972] created by a line vortex in a classical, incompressible, irrotational fluid is the
velocity fluid

~v = λ
~k × ~r

r
(215)

where λ is the vorticity strength and ~k is in the direction of the line vortex.
Comparing this equation with eq.(211), one observe that the velocity field in the
neighborhood of the line vortex in present Schroedinger fluid differs from the ve-
locity field in eq.(212) by a factor g(θ, ϕ), which depends on the angles. The
deviation of this factor from unity distinguishes a vortex in incompressible flow.
In the following section one study the details of the current circulation rather than
the singular points of the velocity field.

4.4 The current for a single particle in a rotating anisotropic

oscillator potential

The Schroedinger equation for a single particle in a rotating anisotropic oscillator
in a coordinate system rotating about the z-axis with angular velocity ω is given
by

(H0 − ωj3)ψ = Eψ (216)
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where

H0 =
1

2m
p2 +

1

2m
mω2

1x
2 +

1

2m
mω2

2y
2 +

1

2m
mω2

3z
2 (217)

and
j3 = xpy − ypx (218)

In App.E is determined to first order in ω, the closed expression for

ψn1n2
(~r) = (1 + iωX)φn1

(x)φn2
(y) (219)

where φn1
and φn2 are simple harmonic oscillator eigenfunctions (E.17)

X = α(xy + βpxpy) (220)

with

α =
m

h̄

ω2
2 + ω2

1

ω2
2 − ω2

1

, β =
2

m2(ω2
2 + ω2

1)
(221)

and where the motion in the z-direction was ignored since it is not affected by the
rotation.

Note that, being of first order in ω, eq.(213) includes only the effects of the
Coriolis force and ignores the quadratic centrifugal potential mω2/(x2 + y2).

In section 4.3 it was concluded that the single-particle velocity flow is irrota-
tional everywhere except at the nodal points of the wave function where it has
vortices. Inspection of eq.(216) shows that the wave function ψn1n2

vanishes if

φn1
(x) = 0 ,

dφn2

dy
= 0

and

φn2
(x) = 0 ,

dφn1

dy
= 0

Therefore ψn1n2
vanishes at the set of points ~r0p and ~rp0 where the first suffix 0

or p denotes values of ~r at which φn1
vanishes or is maximum respectively, and

the second suffix refers similarly to φn2
. The existence of vortices at these points

implies non-vanishing current circulations. The latter is defined as

~C(~r) = ∇× ~J(~r) (222)

where the current ~J(~r) in terms of ψn1n2
in (216) is given by

~J(~r) ≡ 1

m
Re[ψ∗

n1n2
~pψn1n2

] (223)

37



The Jz component of the current is zero and its x and y components are found to
be

Jx =
1

m
Re[ψ∗

n1n2
pxψn1n2

]

=
ωαh̄

m
{φ2

n1
φ2

n2
y + h̄2βφn2

φ′
n2

(φ′
n1

2 − φn1
φ′′

n1
)} (224)

Jy =
1

m
Re[ψ∗

n1n2
pyψn1n2

]

=
ωαh̄

m
{φ2

n1
φ2

n2
x+ h̄2βφn1

φ′
n1

(φ′
n2

2 − φn2
φ′′

n2
)} (225)

The first term in (219) is recognized, in terms of the velocity field, as a linear
irrotational component

~J (IF ) = J (IF )
x

~i+ J (IF )
y

~j = ρ(~r)
ωαh̄

m
∇(xy) (226)

Next one must show that the second term generates sets of localized clockwise
and anticlockwise current circulations at the points ~rop and ~rpo. The total current
~J(~r) obviously vanishes at these points as is expected. One observes that ~J(~r) also
vanishes at the point {roo}. However, at {roo} the velocity field also vanishes and,
as a consequence, one shall find that there are no current circulations about the
points {~roo}.

Next, at an arbitrary point ~r, only the z-component of the current circulation
is non-vanishing and this is given by

C(~r) = [∇× ~J(~r)]z

=
2ωαh̄

m
·
{
φn1

φn2

(
φn2

dφn1

dx
x− φn1

dφn2

dy
y

)

+ βh̄2



φn1

d2φn1

dx2

(
dφn2

dx2

)2

− φn2

d2φn2

dx2

(
dφn1

dx2

)2







 (227)

Evaluating C(~r) at the points {~rop} and {~rpo}

C(~rop) = −2ωαβh̄3

m
φn2

d2φn2

dx2

(
dφn1

dx2

)2

(228)

C(~rpo) =
2ωαβh̄3

m
φn1

d2φn1

dx2

(
dφn2

dx2

)2

(229)

Since for ~rop, dφn2
/dy is maximum and d2φn2

/dy2 is negative, therefore

C(~rop) < 0, α < 0 (ω1 > ω2) ⇒ clockwise rotation

C(~rop) > 0, α > 0 (ω1 < ω2) ⇒ anticlockwise rotation

for ~rpo, dφn1
/dx is maximum and d2φn1

/dx2 is negative, therefore

C(~rpo) < 0, α < 0 (ω1 > ω2) ⇒ anticlockwise rotation

C(~rpo) > 0, α > 0 (ω1 < ω2) ⇒ clockwise rotation
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Figure 3: The current in the x− y plane for one vortex
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Figure 4: The current in the x− y plane for four vortices

On therefore conclude that the first order single-particle current for the rotating
anisotropic oscillator exquibits a set of clockwise and counterclockwise rotations
with their centers forming a rectangular array. The locations of their centres are
redily determined from the zeroes and peakes of the simple harmonic oscillator
eigenfunctions φn1

and φn2
.

Consider some simple examples in what follows:
a) (n1, n2, n3) = (1, 0, 0), and ψ100 for x = y = 0, and one obtain just one vortex
(fig.3a) around the origin.

b) (n1, n2, n3) = (1, 1, 0), and ψ110 for x = 0, and y = ±
√
h̄/mω1 = b1, and

x = ±
√
h̄/mω2 = b2, y = 0. Therefore the (1, 1, 0) state exquibits four vortices

around the points P1(O, b2), P2(O,−b2), P3(b1, O), P4(−b1, O). The first two are
clockwise and the other two are anticlockwise (fig.3b).
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