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1 INTRODUCTION

In this review one exhaustively discuss the interplay between the two main cur-
rent flows for a nucleus consisting of interacting neutrons and protons, i.e. the
irrotational and the rigid rotor flows.

In the first chapter the Villars’ canonical transformation is presented both in the
classical and the generalized form. The irrotational value for the inertia moment
is deduced from the Villars’ treatment. Next the Rowe model is presented and
one explain the reason which underly the generation of rotational flow and the
corresponding rigid-rotor value for the moment of inertia. The last section of the
second chapter deals with the generalized Villars’ transformation which gives the
most general real transformation of the coordinates and velocities of a many-body
system of interacting particles. The physical quantity called vorticity is introduced
in connection with special classes of velocity fields. The kinetic energy in the new
coordinates is written and the rotational component is separated from the rest of
possible kinetic terms.

Chapter three is dedicated to the algebraic approach of nuclear collective mo-
tion. To every rotational model considered in the second chapter there is associated
a specific dynamical group. Special attention is payed to the construction of ir-
reducible unitary representations(unirreps) of the SL(3,R) group by the method
of induced representations. There is also discussed the group associated to the
rigid-rotor ROT'(3) and the ”Mass-Quadrupole Model”-C'M (3).

The last chapter(4) concerns the problem of quantum mechanical systems in
rotating frames. The specifical shapes of currents in the cranked anisotropic har-
monic oscillator are deduced. The phenomena of vorticity lines in the irrotational
velocity field is also discussed.



2 THE VILLARS’ CANONICAL TRANSFOR-
MATION

2.1 The classical Villars’ transformation

The ”canonical form” of the kinetic energy of any system of identical interacting
particles appears as a result of a canonical transformation in which the original
particle coordinates and momenta are replaced by the following new variables:

1. The center-of-mass X, and total momentum P.

2. The Euler angles 6, (s = 1,3), describing the orientation of the body-fixed
frame in space, and their conjugate momenta II,, which are linear functions
of the total angular momentum components L ;.

3. 3N — 6 intrinsic variables &, and their conjugate momenta 7.

The first two conditions are justified by the fact that for any system of interacting
particles there are two obvious collective constants of motion: the total linear and
the total angular momentum. As a result of the canonical transformation one
try to write the Hamiltonian(kinetic energy) of the system in such a way as to
display its dependence on these two constants of motion. The Euler angles of the
body-fixed(intrinsic) frame are the collective variables since a common rotation
of particles can be considered as a rotation of the body-fixed system. The three
Euler angles 65, = (¢,0, ¢) [Goldstein 1959] define an orthogonal transformation
Raq(0s) from space-fixed components x4, where the indices refer to the Cartesian
components:

Tia = Xo + Raa(0s)7i4 (&) (1)
2y = Raa(0s)(@in — Xa). (2)

Here o stands for the letters a, 3,7, the space-fixed Cartesian axes, and A for
A, B, C, the body-fixed Cartesian axes(see Fig.1). The dummy indices convention
is used throughout !. In equation (1) the center-of-mass X, is also isolated. This
is equivalent to the statement that the body-fixed system is free of the center-of-
mass motion.

Using the definition of the center-of-mass in space-fixed coordinates

1 N
Xa = N;xm (3)

where N is the number of particles in the system, one derive a first consequence
due to the particular choice of the body-fixed frame by summing eq.(2) over i

Z fE;A(BC) = RA(BC)a(Z Tio — XoaN) =0 (4)

Irepeated indices are to be summed even if the summation symbol is not indicated
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Figure 1: Coordinates systems: «, 3, v denote the laboratory coordinates A, B
and C' are the body-fixed coordinates and 6; are the Euler angles.

Another constraint is obtained by imposing the vanishing of inertia moments in
the body-fixed frame

szA'rzB - szB'rzC - szszA - (5)

The six equations, (4) and (5), determine how the center-of-mass coordinates and
the Euler angles depend on the space-fixed coordinates z;,. The coordinates x/ ,
are functions of 3A — 6 independent internal (intrinsic) coordinates &,, satisfying
the above conditions identically.

Equation (1) is the coordinate transformation part of a contact(canonical)
transformation generated by [Goldstein 1959]

3N—-6

3
Paaxza Z xza PB + ZH 9 xza =+ Z 7TO'§O’ xza) (6)

where P, stands for the set of canonical momenta P,,Il, 7, which are conjugate
to X,,0s and &,. The old momenta can be obtained from the generating function
F' by the usual expression

OF 09Xy  0b, o€,

o — - P Hs o 7
b 8372‘0, axia o * axia * axiaﬂ- ( )
One also obtains from eq.(3)
0Xz 1
Ps = —0.5P,
oz, 2= N Osl (8)



In order to solve the other two terms in eq.(7), IIs(z, p) and 7, (x, p) one shall
use the Villars’ approach [Villars 1957a]. The first step consists in transforming
the third term of eq.(7), in order to eliminate the explicite occurence of 9, /0x;q,
a quantity that one need not to evaluate, in favour of the more interesting resid-
ual momentum, to be defined bellow. The transformation begins by taking the
derivative of eq.(1) with respect to xys, considering X,, 6, and &, to be functions
of z;,’s. Using eqs.(2) and (3) this gives

Otio 1 ORao 00, ,  Oxia O,
aZL‘kﬁ _52k5a5 N N5a5+ 898 &rk Tia + 85(, &rw

(9)

Rearraging the terms in this last equation one gets

L OFaa 00, y Oria O,
NPT 00, Oxps @ 0C, Oxpg

(0ix — (10)

In deriving (9) use have been made of

OR Aa _ 0X, _ (11)
0¢y ¢,
Next the eq.(10) is multiplied by 0z;,/0¢, and we make the summation over i«
8:ckﬁ 8.Tilg 8RAQ 8«95 ’ 8§U
= G 12
8&- ; 8@ 8«98 6:ckﬁ Tia + 6:ckﬁ ( )
where we have introduced the new definition
a e 8 «
Cpp = Y T O (13)

o 0% 0%

Obviously, the transformation is meaningfull if C,, has inverses so that (12) can

be solved for 0¢,/0xyg,

8§U _ ;Tl 6:ckﬁ _ C;Tl 8.Tzlg 8RAQ 8«9 ,iA (14)
6:ckﬁ 8& 8& 8«9 6:ckﬁ
Then, multiplying by 7, and summing over o, one obtains the expression
85(, &rw _1 698 8RAa 890’5 ]
g - o R « - C o ! ].5
gt axkﬁ 867' or T 8$k5 60 B 867' or ToliA ( )

where eq.(1) has been used in the r.h.s.. Interchanging (k) — (i) and (i) —
(j7v) and reintroducing the summation symbols for convenience, one obtains

. &Em 1
Y = Y gEcin

axza
OR4,
<3 o

RB’YZ jAZ agTBCUTl o (16)



Since C,, = C,,, one can permute o and 7. Splitting also the sum over A and B
into two sums by permuting these two indices one have

ZT{'U 8&7 _ Zaaagac 1

o 8.’172‘0{ oT
ORp,

0, 1 (0OR
- Z Z 5 ( aeA’y RB’Y Z x;’Ap;'B 60 RA’Y Z x]Bij)
s J

P al‘ia AB

where we have introduced a new quantity p’, which has the dimensions of a mo-
mentum

o’ 4 oz

Pia= X Gt Ol = X G ot (1)
Here we define the antisymetric matrix with elements two-rank tensor
OR
As,AB = _AS,BA = aeA’Y RB’Y (18)

and the important physical quantity called intrinsic angular momentum 2, since

it is expressible in terms of &, and 7, (App.B)

/AB = Z(x;Ap;‘B - x;Bp;‘A) (19)

i

One are thus lead to the final relation
Z U = RACszA Z

At this stage it is worthwhile to notice that neither z/, nor the p}, are inde-
pendent variables and therefore are not conjugate variables. Nevertheless, Villars
introduced a suggestive notation for an approximation one is tempted to try at
this place, if the number of particles is sufficiently large: to consider at least some
of the z}, and p), in fact as independent variables, in which case they become
conjugate pairs, of course.

The second step consists in expressing the momenta I, in terms of the total
angular momentum with respect to the center-of-mass

Log = (Tiapig — Tigpia) — (XaPs — XgPs) (21)

i

— > AsapLlip (20)

LTia A<B

Multiplying eq.(7) by x;3 and substracting from the same quantity, but with « and
[ interchanged one gets

1 . .
TiaPiB — TiBPia N (i Ps — xigPy) + ; (%‘a %ZB — Tig %?:) Cilm,
0o 00
- ia—s - 4y — As L, - Hs
Zs: (:c Oig ! 68372‘&) <cz<;7 opren )

2Later we shall see that this quantity is related to the vorticity



Next, summing over ¢, using eq.(3) one obtains L,g
al“g or

La = io - Z; “ Cil T

’ ;{Z(’” %, ﬁa&a> i

805 603 /
+ zg: <:Cm87z6 - SﬂzgaTw) (ITs — Z As,CDLCD)} (22)

Cc<D

One explicite the first term in the r.h.s. of the above equation, using egs.(1), (3),
the functional dependence of X,z’ and the constraint of fixed center-of-mass (4),
and definitions (16), (18)

8.Ti 8:1:1(1 !
> <xm agﬁ i g )c T = RaaRpsLyp (23)

In expliciting the second term from the r.h.s of eq.(21) one use the orthonor-
mation property of rotation matrices, i.e. RaaRps = 04pdas and again (1)

00, 00, ,
2 <xia vy tip &ma) (I = 2, Asenlop)

s C<D

= RuaaRps Y Osan(lls — > AscpLep)

where O, 45 is the matrix element

00, 00,
OsaB = —Ospa = (%A%Rm - xéB@TmRAa> (24)

Consequently the total angular momentum relative to the center-of-mass may be
written as

Laﬁ = RAaRBﬁ [L/ A T Z @s AB H - Z As C’DL )] (25)
C<D

Since the total angular momentum relative to the center-of-mass projected on the
body-fixed frame coordinates is related to the space-fixed one by

Lap = RaaRppLag (26)
one obtains
LAB — L;;B + Z@s AB H - Z As CDLCD) (27>
C<D

In order to simplify this last equation one needs an orthogonality relation for the
matrices As cp and O 4p. For that one multiply eqs(17) and (23) and sums over
s

> AscpOsap =0ac0pp — dpcdap (28)



In deriving the above equation the orthogonality relation for the rotation matrices,
and eqgs.(1) have been used. Using this last equation, then eq.(25) may be expressed
as follows

Lag = Z @s,ABHs (29)
Using the orthogonality condition (27), the eq.(28) may be inversed
Hs = Z AS,ABLAB (30)
A<B

One thus arrive to the main task of the calculations: the expression for the mo-
mentum p;, in terms of the new variables. Introducing (19) and (29) in (7) one
obtains

1 00,
Dia = Npa + RaaPis + Z ?AS,AB(LAB — Lyp) (31)
A<B Yia

In the third term of the r.h.s. of the eq.(30) one may replace (90;/0;o)As a5 by
another matrix element

Mioz,AB - Z
S &L’m

898 AS,AB - %RA,Y
Liay

RB’y (32)
and thus eq.(30) may be reexpressed as

Pia = %Pa + Z RAap;A + Z Mm,é(Lé - L,c) (33)
A A<B

where Ls = Lap. One are also mentioning that the term Ra,p}, can be found in

the literature under the name of residual momentum [Weaver et al. 1976], as we

have mentioned earlier.

Further Villars [Villars 1957a,b] stated that the three terms occuring in eq.(30)
are orthogonal to each other. As we shall see later this is not quite true. For the
moment the kinetic energy is derived following closely the Villars’ treatment

It is obvious that the product between the center-of-mass canonical momenta,
the residual momenta R4,p}, and the third term vanishes. The product between
the last two terms needs some manipulations

DY Ruaalin Y, Miacp(Lep — Lgp) =0

i A C<D

since OR 4 /0,
Thus Villars’ obtained that all the cross terms in the quadratic expression of
the kinetic energy vanish. Introducing tensor of inertial nature

1
QAB = E Z Mioz,AMioz,B (34)

and working out the rest of diagonal terms one obtains the canonical form of the
kinetic energy

1 1 1 9 1
T=— 2 =N PPy — = 2o(L;—L)(Ly—L) (35
ngpza 2mN§ a+2m§p1A+2%QAB< A A)( B B) (3)
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In the case of a system with N interacting non-identical particles eq.(34) and (35)
are rewritten as follows

QAB - Z sz i, B (36)

T = Zp’“ ——P2+Z “‘+ Z@AB I)(Ly—L,)  (37)

2m;

where M = %", m;

2.2 The inertia tensor for irrotational fluid motion

In order to find the expression of Q) 4p - inverse inertia tensor - one must look for
the matrix elements M, AB.C) which appear in eq.(33). Invoking the constraint
given by eq.(4), which specify that the body-fixed system is free of deviations
moments [4p = o} 2,5 one obtains by derivation with respect to z;,

0 OR A,

N N
Tiatip =0="
0l

Rpy(Ip — 14) + ipRaa + T4 Rpa

0%iq et 0iq

One thus obtain for the matrix elements

aRA'y /iARBa + x/iBRAa

Mo ap = R
A= axza B IA - ]B

(38)

where I, p,c) are the diagonal inertia moments. Introducing now eq.(37) into
eq.(33) one get a diagonal form for the tensor Q4p

1 IB+IC /
' —————— A=A
0 A A

Introducing the inertia tensor as the inverse of the tensor ()4 one obtain a value
equivalent to Bohr’s result derived for the rotation and vibration of an irrotational
liquid drop Z;r [Bohr 1952]

(I — Ic)?
T R 9
A m I T Io (39)
(Ic — 14)?
I = -~ 7 40
B T (40)
(I —1Ip)?
T~ = ~= 27 41
c T (41)

The Villar’s derivation of the irrotational flow moment Z; presented above is
rather microscopic. A detailed calculation of Z;r in the frame of the phenomenolog-
ical rotation-vibration model(RVM) may be found in textbooks in nuclear structure
[Eisenberg and Greiner 1970a]. The advantage of the Villar’s derivation is that is

9



exact. However the deduced moment of inertia Z;pr differs very much from ex-
perimental values. The reason seems transparent from the above considerations.
In the irrotational flow transformation, the kinetic energy not only separates into
a rotational and an intrinsic part but, as Villars shows, leads to a rather large
Coriolis coupling term L ;L' z(see the third term in eq.(34)). This coupling must
therefore be responsible for renormalizing Z;r to generate the effective moment
of inertia given by the experiment. Thus, a strong rotational-intrinsic coupling is
fundamental to irrotational flow. Crudely speaking, one may visualize irrotational
flow as a deformation wave propagating over the surface of the nucleus, maintained
by a corresponding motion of the intrinsic structure so that it carries very small
angular momentum [Rowe 1970a,b]

2.3 The inertia tensor for rotational flow

To evaluate the expression of ()4, it is necessary to specify the constraints on the
intrinsic coordinates which define the nuclear orientation angles 6,
According to Villar’s hypothesis

Lip =Y alyaly #0, (A#B) (42)

i.e. the quadrupole mass-tensor is diagonal in the body-fixed frame. Consequently
one has obtained the irrotational flow inertia tensor Zrpr in contradiction with the
adiabatic rotor-model(ARM).

The ARM states the existence of bands of nuclear rotational states whose wave
functions satisfies the properties listed below:

1. Yy = D px(€), states of the same rotational band are characterised by a
common intrinsic wave function

2. Jx(§) =0, i.e. the intrisic wave function carryes zero total angular momen-
tum

3. H = Hy(&) + %ZAB Qap(&)JaJp, is the adiabatic hamiltonian, where H
and ()45 operate on intrisic coordinates

4.Q(&) — (x(&) 1 Q&) | x(€) ), the inverse inertia tensor can be replaced by its
expectation over the common intrinsic wave function for a given rotational
band. This is consistent with (2), i.e. x(&) is independent of J.

These properties are valid in the ”adiabatic approximation”, when the cen-
trifugal stretching are suppressed in zero order. This approximation is not very
good for odd rotational nuclei, because the odd particles are insuficiently bound
to the even core to give the combined structure of rigidity necessary to suppress
the centrifugal or other intrisic- rotational couplings(Coriolis terms in the Hamil-
tonian). For doubly even nuclei, for which Coriolis perturbations are not normally
entertained, the ARM works quite well.

10



A question arise naturally. how does nuclei rotate in the ARM? Rowe attempted
to answer this question in the following manner: Transforming the wave function
given by property (1) by a rotation § — 6" one obtains:

Yanr — Wy (7)) = Dig(0)x(€) = () (43)

This transformation is generated by J since it operates only on D{, and conse-
quently the wave function transforms by simply rotating the spatial coordinates

Tia = Z RAax/iA (44)

Thus in the absence of any coupling between the intrinsic and the rotational degrees
of freedom, the distatnces between particles are left invariant by the rotational
motion

> (@ia—ja)’ = Y Raal0s) Rpa(0s)(win —254) (@ip— i) = D (24 —2j4)" (45)

«a aAB «
It then follows that the rotational motion of the zero-order ARM is rotational flow
or rigid — body flow. The only distinction between ordinary mechanical rigid
rotation and nuclear rotational flow is that in the second case the particles are not
frozen in position but are free to execute any independent motion in the intrinsic
coordinates.

Property (2) of the ARM express the necessity that the system has zero- angular

momentum relative to the body-fixed axes. Classicaly this is expressed by

5
I'=> 7 xp;=0 (46)
J
or expressing in differential constraints

> (@402 g — alpoal 1) =0 (47)
J
It is important to notice that eq.(46) is a non-holonomic constraint which cannot
be integrated to give the 6, in terms of the original particle coordinates. At this
important remark one shall come back latter, when talking the imposibility of
rigid-flow in quantum mechanics.
Since the differentials dz enter in the definition of rigid frames by means of the
formula
Wi = T4 + 02, (48)

eq.(46) may be expressed again in the form

S (@425 — apal) =0 (49)

J

Using eq.(1) and (4) one get after a short calculation that

Y (Watlp — Tipaia) = D (¥ aRpyTjy — TipRaytyy) = 0 (50)

J Jv

11



Differentiating this last expression with respect to 6y, multiplying by 06 /0x;, and
summing over s one obtains after a long but straightforward calculation that

8RA aRB
/' /‘ ’YR _ /' /' o
%(x]ijC aSL’m Cvy x]Ax]C’ aria RC“{)
0%~ 00,
= Z(x;ARBV - x;BRAw) 8«9?67@@

Jvs
Defining the inertia moments relative to the body-fixed axes(see eq.(37)) and using
the definition (33), the above equation will be rewritten in the following manner
0z, 00
3«95 &L’m

> (Ipc Mo, ac — LacMiapc) = Z(x;ARBv — 2ipRay) (51)

C jvs
This last equation is a mathematical identity and carries no information concerning
the character of the rotational and intrinsic coordinates. For rotational flow, this
information is contained in eq.(46). Since 62';j4(§y) = (92),4/98,)08,, €q.(46) takes
the form

oz’ oz,
/ JjB / JA
1= =0 52
%:(SL’]A aga x]B aga ) ( )
Substitution of eq.(2) in eq.(50) gives
Oy

Z(x;ARB'y - x;‘BRA“/)— =

J
Since Y-; 2’4 = 0 and 0x;,/0X, = 0oy there simply results that

&'Eﬂ

S Ry, 251 — g
jALtBy
v 0Xa
which make possible the construction of the trivial equation

Orjy
X, 0 (54)

> (7'jaRpy — 2'jpRay)
Vil
Next, eq.(51) is multiplyied by 0¢,/0x;, and summed over o, whereas eq.(52) is
simply multiplyed by 0X,/0z;,. Then both equations are added to the r.h.s. of
eq.(50)

> UpcMia,ac — LacMia,pc) = (24 Rpa — TipRaa) (55)
c

In expanded form, by making cyclic permutation and using the fact that M;, 44 =
Mo BB = Mio,cc = 0, this equation reads

—(Iaa + Ipg)Mio ap + IacMia e + IpcMinca = «'ipRaon — t'iaRpa (56)
IcaMinap + (Ipg — Icc)Miapo + IpaMinca = —'icRpa — ¥'ipRco(57)
—IogMio aB — IapMiapc + (Ioc + Laa) Mia.ca t'icRaa — @' iaRca  (58)

12



Defining the rigid-body inertia tensor Zggr

Ipp + Ice —Iap —Iac
Irr = —Ipa Icc+1aa —Ipc (59)
—Ica —Icp Iaa+ 1B

eq.(55-57) may be written in the condensed form
TraMia = 1'iaRa (60)
Next, one multiply each side of eq.(58) by its transpose, and sum over i«

ZIRR Za)ngR - Z r zA )(Ra)Trlzll (61)

[1e

Since in the matrix form the inverse inertia tensor is
Q = Z(Mia)(Mia)T (62)
and the rotation is orthogonal, i.e. RTR = I, eq.(59) becomes

TrrQTthr = Irr (63)

Multiplying (61) on the left and on the right with Z~!, one obtains what was to
be expected, i.e. @) is the inverse of I.

The Coriolis coupling terms —IA/AIA/ 5, —L AIA/%; vanish for rotational flow coordi-
nates, thereby confirming the argument that the absence of intrinsic angular mo-
mentum and Coriolis coupling implies rotational flow. Invoking eq.(13),(18),(51)
one verify the above mentioned statement

T /A / / / 6:52 / 8LU; —
Le = Z(xiApiB - xiniA) = ZZ (%‘A 8€B — ;B a§A> (C 1)0’7'7TT =0 (64)

i

Therefore one can see eq.(51) as a constraint which ensure that the body-fixed
system carries no angular momentum. The kinetic energy then reads

p@a o zA
T=2 om, = i +22ml+ Z i) a Ll (95)

At first sight one should suppose that this canonical transformation demonstrates
that all many-body rotations must be rotational flow. In fact, there is still a
centrifugal rotational-intrinsic coupling coming from the dependence of the inertia
tensor Zrr on the dynamic intrinsic coordinates. The above calculations show
that it is possible to choose an intrinsic coordinate system such that the Coriolis
coupling component in the kinetic energy vanishes.

For the motion to be rigid rotation it must be required that the deformed
nucleus have sufficient rigidity to suppress the effects of the centrifugal coupling
and to replace the inertia tensor by its expectation over the intrinsic wave function
(property 4 of the ARM which express the adiabaticity).

13



2.4 The generalized Villar’s transformation

The most general real linear transformation on the Cartesian coordinates of the
n-th particle of a collection of N identical particles is given by [Weaver and Bieden-
harn 1972]
3
Tia = Z g;c}x;iAv ((l, a=1, 3) (66)
a=1
where g~1 is the inverse of the real (3 x 3) matrix g. The set of matrices g with
nonzero determinant form the General Linear Group in the real three-dimensional
space GL(3,R), which will be presented in the next chapter. Its generators are

the six shear operators
N

lag = Z(Impw + ZigPia) (67)
=1

and the three independent components of the total angular momentum tensor

N
Lap = 2(9€mpw — ZigPia) (68)
where p;, is the momentum.

If 27/ in (64) is held fixed and the nine parameters g;,' are considered to be
dynamic, the 3N degrees of freedom of the system reduce to these nine. The pa-
rameters g may be uniquely decomposed according to the Cartan decomposition
[Gantmacher 1953] ¢ = SR, where S and R are respectively symmetric and or-
thogonal (3 x 3) real matrices. Furthermore, S can be diagonalized by means of
an orthogonal matrix so that one can write g = R"SyR’ where R’ and R” are two
different orthogonal matrices and .S is diagonal. The decomposition can be made
unique by requiring

det B = det R =1, Sps > So1 > Soz > 0 (69)

Recall the definition of the center-of-mass coordinates (eq.(3)) and allow the z
to depend on (3N — 12) independent intrinsic coordinates &, in order to regain the
original 3N degrees of freedom. The complete transformation becomes

3
Tia = Xa+ Y Ruo(0:)S0a Raa(00)270 (&) (70)

A,a=1

where 0, and ¢; are sets of Euler angles.

An appropriate choice of the generalized coordinates X, 05, Spa, and ¢, is made
by imposing 12 constraints on z!/ . For the center-of-mass one have the usual three
constraints

S =Y 4, ()
where

Tia = ZR;loz(xia — Xa) (72)



and analogously
N
pia = Riyo(Pia = Po) + Pia (73)
i=1
The coordinates 6, are chosen in the same manner as Villars (section 2.1) such
that the first rotation, R, diagonalizes the mass tensor

N N
meiAxiB = 5ABmZ:cfA =dapla (74)

i=1 i=1

where m is the mass of a nucleon. Thus the three axes (ABC) coincide with
the principal axes. Next, the Sp4 are chosen by requiring a spherical quadrupole
distribution for the intrinsic system [Cusson 1968], i.e

N 3
Z Z Bb ia zb = 5AB (75)

i=1 a,b=1
or equivalently
Z% i = 0ap (76)

Combining (72) and (73), one have

Sou = (77)

m
Iy

One next generalize the constraint for rotational flow as used by Rowe [Rowe
1970Db]

N

> (@l 62ty — aoatl ) = 0

i=1

and since 077, = (027,/0¢,)0&, then (see eq.(51))

oz, 0z, \
zj: <SL’]a 2%, — 7, %, ) =0 (78)
which are likewise nonintegrable except for the the trivial case of a frozen intrinsic
structure. In using eq.(76), one must therefore always be careful to remember that
the intrinsic axes (a, b, ¢) and hence the collective coordinates, ¢;, cannot, in gen-
eral, be defined in integrated form as functions of the particle coordinates. Only
the differentials §¢; are strictly definable. This does not present any immediate
problem since the nonintegrable coordinates do not explicitely appear in the ex-
pansion of the kinetic energy. Thus, the coordinates ¢;, are cyclic. The use of the
nonintegrable but cyclic coordinates is a well known device in classical mechanics
[Goldstein 1959]. The nonintegrability question is discussed further.
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The transformed kinetic energy can be obtained ffrom either of the two expres-

sions derived in Appendix A.

The transformed momentum for the i-th particle is given by

Pia = —1 al'ia
R 0Xz 0 s 0  0Soa O Opr O n 0, 0 (79)
al‘ia GXB aZL‘m 608 al‘ia 8SOA al‘ia 8¢>t al‘ia 8&7
Now using the definition (3) one have
0Xz 0 ih o 1
e 90X, T Nax, — Nl (80)
Noticing that
:aZL‘m 0 . 0 :aZL‘m 0
03 o 805 aZL‘m’ 8¢5 - 8¢>t aZL‘m
and using eqs.(68-71), then
8xm OR!,,,
Z = Y —AYRL Tiapin (81)
iaAB 80
and thus the second term in (77) reads
X 8372‘0, 6 _1
—1ih 8(93 8(93 = iMia,ABLAB (82)

where L,p and M;, ap were defined earlier (see egs.(18) and (33)). From (37) one

have that
Mia,AB =

/ /
xiARBa+xiBRAa Y,

OR',,,

Iy—1Ip

Ba 837 (83)

After some algebraic manipulations one obtains for the third term, following

the same reasoning

Opy 0 1
— = —=N;qa5L 84
D 00 5 Nia.apLas (84)
where
IA T R ot I—BZL‘,‘AR/ o
Niouas = Ripo ot _ g V1a W80 TV 1, 50 (85)
: 8 Tia Iy—1p
and L4p are the rotation — distortion operators. They are defined by
I I
Lap = —B$iAPiB - _AxiniA (86)
Is Ip

and have vector components

EAE

_EabccBC’

(87)



Next using eq.(78), one get

. 0Spa O 0I4 0
ik = A S 88
’ al‘ia 6SOA ! aZL‘m 6IA ( )
But since 14 =m Y ; 2%,
ol
&U;‘; = 29max; AR, (89)
Combining (86) and (87) one arrive at the result
- 0504 . 0
—ih ax(;a = —22i—zm;ﬁ'Aa:cmE (90)

Calculation of the last term in eq.(78) demands a lot of algebra and therefore one
simply list bellow the result

8€o 0 . 8372‘0, 0
—i = i 1
M oemog, ~ O 5 B, (1)
where 5 9
TjA  OTjA
, = : 92
TN (92)

Therefore, inserting (78), (80), (82), (88) and (90) into (77) yields the transformed
momentum

1 L0 1 1
Dia = NPa + Ry e + QmR;;axiA(—lhE) + 5 ia,ABLAB — éNimAB»CAB (93)
where o 5
1 ~10%44 .
= —ih—— 94
Do oA 8&)\ ( a£o> ( )

Note that the nonintegrable coordinate ¢; does not appear in (91) as can be seen
from (90). Furthermore, the opreator £4p which acts on ¢;, has a well defined
action on the particle coordinates, which will be discussed later. Thus, all the
components on the right-hand-side of (91) are well defined.

The transformed kineyic energy T', can now be obtained by squaring (91) [Gul-
shani and Rowe 1976]

1
T=3 5~V = Toar + T + Teon (95)
where ]
Tom = - > P2 (96)
1
TLintr = omN ZPN?A (97)
iA
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Tcoll = Tvib +T7"ot

= =21 14
A

53

A<B

0? N —3 1 0
oI ( 21, b;A T4 — IB)aIA
l T4+ Ip 4/Tolg
(Ia—Ip)? (Ia—Ip)?

(Lap + Lhp) = LAgﬁAB] (98)
The expression for T, in (96) is similar to that derived by Cusson [Cusson 1968]
where T,;, was absent. From a different point of view, Zickendraht [Zickendraht
1971] derived an expression similar to T,,; but where the £ 45 were intrinsic quan-
tities such that T,,; was strongly coupled to the intrinsic system. It is important
to stress out that in the above expansion, (93), the only coupling between T.,; and
Tiner arises through the dependence of C,, on the collective coordinates. There
is no explicit dynamical coupling as was the case in the Zickendraht’s and Vil-
lars’s transformations. Similar expression has been given in [Dzyublik et al. 1972,
[Weaver et al. 1976] and [Rowe and Rosensteel 1978].

It is interesting to establish a relation between the Villar’s kinetic energy de-
rived in section 2.1 and the kinetic energy in eq.(93). In order to do this one must
first give a classical interpretation of the opeartors occuring in Villars’ transfor-
mation. Ignoring the center-of-mass motion, the Villars’ tarnsformation can be
written as

Tio = RAQ(QS)ZL‘Z‘A(gO) (99)

The Euler angles 04(s = 1,2,3) are chosen such that the axes (A, B, (') coincide
with the principal axes

MR aaRBsTiaTis = Sapmai, = dapla (100)

Differentiating (97) with respect to time one finds that the components of the
space-fixed velocities along the principal axes are given by

#ia = Raatia = Raa(RpsTip + Rpaiip) = Wpatip + &g (101)

where the three angular momentum velocities wap of the principal axes (ABC)
are given by

wap = —wpa = RaaRpa (A # B) (102)

Using (99), the total angular momentum components are
Lap = m(xiadip — viptia) = Lyp +wap(Ia + Ip) (103)
where L/, 5 is a component of the angular momentum relative to the principal axes
up = m(Tiatip — Tipdiy) (104)

To express wap and L/, 5 in terms of particle coordinates and momenta, and thereby
extend their definitions to quantum mechanics, one differentiate (98) with respect
to time and obtain

d
@(mRAaRBﬁxmxjﬁ) =0 (105)
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Using the definition (67) for the shear operators one derive

WwAB =

ot (A#D) (106)

where the single-particle momentum is defined as
Dia = MTia (107)

Combining (91) and (94), one obtains

Ia+1 2141 I I
L'yg = Lap —wagp A By g =— A0 —B$iAPiB + _sz‘sz‘A (108)
Iy—1Ip Iy—1Ip Iy Ip

The expression (66) in terms of momenta rather than velocities, are valid both

in classical and quantum mechanics. However, whereas in classical mechanics I
has the significance of the relative angular momentum of the system as seen by
an observer moving with the principal coordinate axis (body-fixed), it does not
have the structure of an angular momentum operator in quantum mechanics; i.e.
its components do not form a closed SU(2) algebra. It is convenient therefore, to
express L' in terms of the angular momentum £ (vorticity) whose components are
given in (84). Equation (106) can then be simply manipulated into the form

I 4141p [IAJrIB
AB =

Loan—L
(In—Ip)? |2y/Talg AP 74

Likewise the shear operators t,p can be expressed

Iy+1g 2v1alp
Lap —
14— Ip 1415

| wzs) (109)

tap = EAB> , (A#DB) (110)
Note that eqs.(106-108) are all valid both in classical and quantum mechanics.
Corresponding expressions for the classical angular velocity can be obtained by
replacing tag by (Ia — Ip)wap according to (104). From (96), one then obtain

Lag— L
wap = 2B ZAB (4 £ B) (111)
Iy—1Ip

and from (107)

s+ Ip I 2/ 1Alp
Iy—1Ip
Now one can establish the connection between the intrinsic angulat momentum

L occuring in the Villars’ treatment and the vorticity. From the above considera-
tions one have that

WwAB = EAB (112)

L%;”WS) = Lap = %iapip — Tippia = RaaRpsLlals (113)
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and comparing the Villars’ expression for the rotational kinetic energy from (34)

; 1 Iy+1Ip i Villars) 2
T(Vzllars) _ = A L (Villars) _ 71 ( 114
with the rotational part of (96)
1 Iy+1p < ) 4y/1alp 2 )
Trot = 3 ———— | Lig — ————LapLlap+ L
F2 ,g;s (Ia—Ip)2 \"AP Iy Iy AP 778

and using (B.11) from App.B

1 Villars 2\/ IAIB
AB

- c
I+ 15 "

one finds that Tr%mars) contains terms in L% 5z and LapLap which are identical to

those in T, but that it differs by a term in L p

7. — pWillars) | 1 (VIa+ V1p)?
rot — Lrot a
2 A<B (IA - [B)2

L2 (115)

This is not surprising since, in Villars’ classical case, L4p operates on intrinsic
coordinates and the extra term is contained in 7},;.. The important point, however
is that whereas in Villars’ case the term in LagL sp effects a dynamical coupling
of the intrinsic and collective degrees of freedom, in the generalized case [Gulshani
and Rowe 1976] it is a purely collective operator.
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3 ALGEBRAIC APPROACH TO NUCLEAR COL-
LECTIVE ROTATIONAL-VIBRATIONAL MO-
TION

3.1 Dynamical symmetry of rotating systems

The solution to two physics problems from the theory of rotational states in atomic
nuclei require Lie Group methods:

e What is the shape of a deformed nucleus and how does it rotate?

e What is the fundamental microscopic physics underlying macroscopic nuclear
models?

The first question, an important unsolved basic science problem in nuclear struc-
ture physics, is pure kinematics. The precise quantitative formulation of this ques-
tion is phrased in terms of Clasimir invariants of certain subalgebra of the non-
compact symplectic algebra Sp(3,R), [Rosensteel 1992a.b].

The second question is pure theory. The fundamental theory of nuclei, i.e.,
of many-body systems of strongly interacting neutrons and protons, is the shell-
model. However, useful macroscopic models ignore the shell structure of the nu-
cleus and considere it to be a rotating fluid droplet. The relationship betwen these
two seemingly incompatible theoretical approaches to nuclear structure is sim-
ply the connection between the reducible representations on the Hilbert Space of
square integrable functions L?(R34) of various subalgebra chains of the symplectic
algebra and their irreducible representations.

The real symplectic algebra, as represented on L?(R34) consists of all hermitian
one-body operators that are quadratic in the space and/or momentum operators
[Rowe 1985], [Rosensteel and Rowe 1985]. A basis for this 21-dimensional noncom-
pact algebra is furnished by the shear tensor N;;, and the symmetric inertia tensor
Qi; and kinetic Tj; tensors, where 4, j index the cartesian axes z,y, z and

Nij = > ZaiPaj (116)
Qij = Z xaixaj (117)
Tij = Y DaiPaj (118)

The sums are performed over the particle index o = 1,2, ..., A. The kinetic and
inertia tensors each span abelian subalgebras isomorphic to R°. The N;; span the
Lie algebra of the linear motion group, GL(3,R). One show bellow the two princi-
pal Sp(3, R) subalgebra chains that terminate with the orbital angular momentum
subalgebra SO(3).

The collective model chain passes through the general collective motion algebra
GCM (3) and the rotational algebra ROT'(3). The shell model chain traverses
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Collective Model Chain Shell Model Chain

SH3) contraction U@ Phonon

E

GCM3)
\
GL(3)

ROT(3) \CO”"""C“O” SU3) Elliot

the symmetry algebra of the isotropic harmonic oscillator SU(3). The defining
generators for each of these subalgebras are as follows:

SAa3)

SO(3) :=spangi(N — NT);;

GL(3) := SO(3) ® spangi(N + NT);;
GCM(3) := GL(3) ® span RQ;;

SU(3) := SO(3) @ spanpg(Q® + T'®),

where @ denotes vector space direct sum and rank 2 tensors are formed from the
traceless part of the corresponding operators, for example, the mass quadrupole
operator is

QY = Qij — 6,tr(Q)/3 = Y (TaiTaj — 072 /3)

The subalgebras in the geometrical model chain are essentially kinematical in
origin. SO(3) and GL(3) are Lie algebras of motion (dynamic) group acting on
three-dimensional Euclidean space. ROT(3) and GCM (3) add the inertia tensor
to the corresponding Lie algebras of the motion groups SO(3) and GL(3). But,
the inertia tensor measures the spatial extension and deformation of a body, since
its eigenvalues are the principal moments of the inertia ellipsoid. Thus, ROT(3)
and GCM (3) are kinematical algebras too.

The shell-model chain provides a dynamical component to the theory via the
harmonic oscillator Hamiltonian Hy = (tr(T) + tr(Q))/2 = S.(p2 + 22)/2 and
its symmetry algebra SU(3). Transformations from the shell model chain to the
geometrical model chain provide a kinematical interpretation to shell model config-
urations. As every body know Elliot’s model SU(3) gives quasi-rotational bands
which approach those of the rotor model in the limit of large-dimensional rep-
resentations(contraction to ROT(3)). There is the problem that SU(3) states
needs to be renormalized by coupling to higher shells to get B(E2) transitions up
to observed values. Generalizing the SU(3) model to the symplectic model one
get symplectic states that are shell model configurations and eigenstates of the
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Harmonic Oscillator Hamiltonian Hy carrying good Elliot SU(3) symmetry (\, u)
[Talmi 1993].

Thus, the shell model chain provides the connection with microscopic fermion
physics and it enables detailed shell model calculations to be performed for geomet-
rical collective states. From the view point of this chain, the symplectic model is an
extension of the conventional oscillator shell model that goes beyond single major
shells to include the np — nh coherent admixtures required to build quadrupole
and monopole colectivity.

3.2 ROT(3)-the dynamical symmetry of the rigid rotator

The concept of a body with a non-spherical shape presupposes that this shape is
in some sense measurable. This, in turn, requires - by the uncertainty relations for
the angular momentum - that infinitely many angular momenta are necesarily in
order to specify the shape. If the shape of the body is rigid, these angular momenta
must not dynamically affect the shape being mesured, so that the shape can be
considered as fixed over the entire range of energy. In order that the shape is
measurable in quantum mechanical framework, there must exist a set of quantum
mechanical operators associated with the shape of the body. The eigenvalues of
these operators will correspond to the result of measurement of the shape.

From the above consideration, it is clear that these shape operators does not
commute with the angular momentum operators nor even with the Hamiltonian of
the system. Therefore, the shape operators cannot be generators of any symmetry
groups of the system, but rather constitute those of the dynamical group. If any
of the shape operators does not commute with each other, it is then impossible
to diagonalize these operators simultaneously. This implies that the shape cannot
accurately be determined without uncertainty in this case. Thus, it is natural to
define the concept of the rigid shape as being the condition that the quantum me-
chanical operators associated with the shape can be simultaneously diagonalized.
In other words, the shape may be called quantum mechanically rigid, if and
only if the non-spherical shape is in principle measurable without any quantum
mechanical uncertainties[Ui 1970].

As the quantum mechanical shape operators are taken the mass multipole oper-
ators which may be obtained from the density distribution of the body in the usual
way. Then, for a quadratically deformed shape such as the symmetric and asym-
metric tops, the five components of the (mass) quadrupole moment are sufficient
to define the shape.

In order to have a rigid shape, every component of the operator must commute
with each other. Since the quadrupole moment transforms as an irreducible tensor
of rank 2 under rotation of ordinary space, the commutation relation are needful.
Take the quadrupole moment as

QP =" r2Y2u(ba ba) (119)
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Since for an arbitrary irreducible tensor of rank A the following relations are valide

[Rose 1957

L, Qudd = VO F )N £ 1+ 1) Qs (120)
[Le, Qul = 1Q, (121)

where L, (v = 0,41) are the spherical components of the angular momentum,
then replacing Q», by Qz and using the commutation relations for the SO(3)
algebra of the angular momentum one obtains the following set of commutation
relations for the ROT(3) algebra

[L..Ly]=+L., [Ly L. ]=2L., (122)
[L:,QP] = uQ?, [Le,QP] = /2 F w3+ Q2 (123)

and
Q®,Q%1 =0 (124)

Therefore the rotational algebra ROT(3) is spanned by the one-body quadrupole
operator Ql(f) plus the angular momentum algebra SO(3). In its quantum reali-
sation ROT'(3) is the adiabatic roational model [Ui 1970], [Weaver et al. 1973,
while, in its classical realisation ROT(3) is the Euler rigid body model [Corben
1968]. This Lie algebra defines an eight- parameter {Lo, L1, Q12®, Q11?, Qo}
noncompact Lie group with semidirect product structure. On the other hand, the
well known Lie algebra of the SU(3) group is expressed in Racah’s spherical basis
as [Eisenberg & Greiner 1970c]

[L:, L] = =£Ly, [Ly,L-|=2L, (125)
L..QW) = pQY, [Le.QY)=/2FmB £l (126)
(@5, Qi1 = 3VI0 Gl b L (127)
where
QY = QP () + QP (p) (128)

Therefore eqs.(119-121) can be obtained from eqs.(122-124) by the procedure
[Gilmore 1974], [Barut and Raczka 1977] of contraction: first, put fo) and next,
take the limit € — 0 keeping 7}, finite and thus

T, T] = €[QY, Q] = O(2) =~ 0 (129)

The Casimir invariants of ROT(3) can be obtained from the casimir operators

[Wybourne 1974] of the SU(3) group

N N 1 A N
Cy=(Lx L)+ 5(Q%-Q¥) (130)
Cs = [Q x QP x Q@)Y + 3\@ Q@ x L x L)y (131)



by the Wigner procedure of contraction above mentioned

2
Cy =3 C22,0QPQ0, (132)
m
and
2
Cs = Z Cu? u22 ;122 Cui —2u300 Ql(i)Ql(lQQ)Q(*LS (133>
P12 143

3.3 The group of linear collective flows SL(3, R)

One finds a more interesting algebraic structure if one consider in addition the
time derivatives of the quadrupole moment

QP = +(H,QP) (134)

where H is the Hamiltonian. If the potential energy is velocity independent (or
more precisely to be not of spin-orbit type)then

) 2
Qg’) = Z(xaipaj + T )Pai — §5z‘j’l“apa = Si(jz) (135)

is called the shear momentum.
The commutator of two Sij@) is an orbital angular momentum, e.g.

[Sijs Ski] = —ih(8;1Lix + 6uLjk + OjuLy; + SixLj1) (136)

where
Li; = Z(l’az‘paj + TajPai) (137)

a

is the angular momentum operator. The commutator of the angular momentum
and the shear operator is

1Sij, L) = —ih(0;0Si + 6uSjk + 0jxSu + 0i:Sj1) (138)

Since the L;; spans the subalgebra SU(3) one are then lead to the conclusion that
the five S;; and three L; generate the SL(3) algebra. The essential commutation
rules basis are

Lo, Ly)==+Ly, [Ly,L_]|=2Ly, [Lo,Su) =pS, (139)
(L, Syl = \/E6 — (£ 1))Sux1, [Sp, S-u] = —4Lo (140)

where eqs.(117) and (118) have been used.
To explore the physical consequence of the above commutation relations one
make the following assumptions:

e The time derivatives of the mass quadrupole operator of the nucleus generate

the algebra of SL(3, R)
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e The electric quadrupole moment is proportional to the mass quadrupole mo-
ment

e The states of the nucleus form a basis for one irreducible unitary represen-
tation of SL(3).

SL(3,R) is a non-compact group. This means that the group volume is
infinite. To see this consider the realisation of an element of SL(3, R) by
a 3 x 3 real matrix with unit determinant. The entries in this matrix are
bounded-they may range between —oco and +o0.

3.4 The rotational-vibrational collective motion group C'M(3)

The C'M (3) model has its counterpart in the classical Riemann model of rotating
fluids [Chandrasekhar 1968]. It is the extension of the motion group of ROT(3)
from SO(3) to the group of linear transformations SL(3) and incorporating the
monopole operator 3, 7,. The resulting Lie algebra C'M(3) allows for the conti-
nous range of rotational dynamics from rigid rotation to irrotational flow [Cusson
1968], [Weaver, Cusson and Bidenharn 1976], [Rosensteel and Rowe 1976]. Thus
the C'M(3) is obtained by adjoining the 6 quadrupole moments ();; to the genera-
tors L;; and S;; of SL(3). The condition of trace zero may be relaxed temporary.

The first who pointed out the existence of this symmetry was Tomonaga [Tomon-
aga 1955]. For an irrotational displacement of a system of particles in an incom-
pressible fluid the velocity field can be derived from a potential & which satisfies

the Laplace equation
AP =0 (141)

such that
v=Vo (142)

The infinitesimal displacement of a particle at the position (z,y) is then given by

0P (T4, Ya)

= 14
0xy =€ . (143)
5yo = 22 arUo) (144)

Yo

Integrating the Laplace equation one obtain for example the quadrupole potential

1
D, = 5(932 +v7) (145)
which gives
v, — 920, va) (146)
Y
a¢ [eB) [0
Yoo = —7(2 Ya) (147)
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Substituting these last two equations into eqs.(141-142) one get

(14 €)zq (148)
Yo = (1 =€)y (149)

/
ZEC\{

Associated to this transformation one have the infinitesimal generator [Wybourne
1974]

— Yy 150
Yo, (150)
Integrating again the Laplace equation one get
by =2y (151)
which gives after the same algebra manipulations

B )
Xy = 24— — 152
> = Tag - +yaaxa (152)

One thus obtain the two generators of the two-dimensional quadrupole irrotational
flow

Pl = Zxapxa - yaPya (153)

P2 = Z xana + yaPya (154)

They generate together with the angular momentum the algebra SL(2) = SO(2) ®
spang{ P, + Py} = spang{L., P;, P»} and satisfies the commutation relations

[Py, P, = 2ihL,, [Py, L] = —2ihPy, [L., P| = —2ihL, (155)

Therefore if the system is initially described by a representation of SL(2, R) these
motions will not carry the system outside the representation. According to Tomon-
aga procedure, considering the momenta P; and P, one look for the conjugate
coordinates )1 and ()

Qi =53~ 32) (156)
Q2= ZTala (157)

Commuting with the generators of SL(2, R) algebra one gets
[P1,Q2] =0, [P, Q1] =0, [P, Q1] = —ihR?, [Py, Qs] = —ihR? (158)
where

R =3 (o +va)

a
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Thus (P,, Q) does not form a conjugate couple. However Tomonaga stressed that
if the system is large enough the fluctuations in R? are small, i.e. R? ~ Ry* is a ¢-
number. If not one obtains the closed algebra CM(2) = SL(2,R) ® {Q1, Q2, R?}.
In the limit case one obtains the contraction of C'M(2): Introducing the scaled
momenta Iy = P,/R32, the commutation relations becomes[Weaver 1980]:

1

Mo, Qp] = R—OQ[P@, Qp) = —ihdag, [Hg,Ig] = [Qa, Q] =0 (159)

and one concludes that for a system with small fluctuations and with large RZ,
truly canonical coordinates and momenta emerge to the generators of Heisenberg-
Weyl W [Weyl 1931].
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4 QUANTUM MECHANICS TREATMENT OF
FLOWS IN ROTATING FRAMES

4.1 The Hamiltonian in a rotating system

Let Hy be the Hamiltonian in the stationary frame (laboratory fixed) and

g3 = > _(@ipyi — YiDai) (160)
the angular momentum of the system about the axes of rotation, which one take
to be the z-axis. The Hamiltonian in the rotating frame is given by

H = Hy— \js (161)

This hamiltonian can be derived in several ways, each of which gives different
insights.
In the Inglis cranking model Hj is an independent-particel Hamiltonian

1
Hy = %pQ + Vo (7) (162)

where

7(t) = R(wt) - 7 (163)
with R an orthogonal rotation matrix. By a transformation to rotating coordi-
nates, one derives the Hamiltonian.

Alternatively, one may seek a time-dependent solution to the Schroedinger

equation
H(t))(t) = (e ™9/m Foe™tds/myy (1) = —ih&g—it) (164)
which is stationary in the rotating frame. This done by writting the wave function
U(t) = e (1) (165)
so that ¢; is a solution of the wave function
(Hy ~ win)olt) = in?20 (160)

The requirement that 1(¢) should be stationary in the rotating frame implies that
¢(t) must be an eigenstate of Hy — wjs.

Finally a more fundamental derivation reveals that H = Hy — wjs is in fact the
hamiltonian for the system in the rotating frame and that —wj3 is just the term
needed to include the effects of the centrifugal and the Coriolis force. To derive the
hamiltonian one resort to the textbook [Goldstein 1959]. The initial step consists
in relating the velocities of a particle relative to the space U5 and rotating v, set of
axes respectively

—

Vs =Up + W0 X T (167)
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Analogously the time rate of change of v is

dv dv T, - L
((Z)SE&’SZ(;)r+wxvszar+2(wxf')+wx(wxf') (168)
where .
g, = & (169)
a, =
dt
Finally, the equation of motion, which in the inertial system is simply
F = ma, (170)
expands, when expressed in the rotating coordinates, into the equation
F=mld, +2@%x7)+dx (& x )] (171)

To an observer situated in the rotating system it therefore appears as if the particle
is moving under the influence of an effective force Fi;¢. If F' derives from a potential

Vo then

Fopp=—VVo—2m(& X 7,) —m@ x (& x 7) (172)

In order to derive the Hamiltonian from F. 7¢ in a frame rotating with angular
velocity &, one must first be able to derive Fiss like F' = —VV}, from a potential.
The centrifugal term in F' can be obtained from the gradient of the centrifugal

potential

1

where the rigid-body tensor has components
(IRR)ij = m (5@'7’2 - 7’@'7’]') (174)

The Coriolis force, however, cannot be derived from the gradient of a potential.
It can, however, be derived from a generalized potential in exact analogy with the
magnetic fiels force. A constant magnetic field B can be related to the magnetic
vector potential A through the expression

. Bx7¥
A= (175)
2
The magnetic force
Fray=-1Bxv=2vw A)= V(L5 (B x7) (176)
g c c 2c
then admits a generalized potential [Goldstein 1959]
Vinag = =55+ (B x ) (177)
c
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giving the correct equations of motions when used in the lagrangian. One thus
established an analogy between the Lorentz and Coriolis potentials. Similarily,
then, we can define for the Coriolis term in F' the generalized potential

Vir = —mi - (@ x 7) (178)

The total potential for the system in the rotating system is then

1
Ueff:‘/o_iﬁ'IRR'uj—mU-(QXF) (179)
Introducing the Lagrangian

1
L= §m1)2 — Ueyy (180)

one obtains the canonical momentum

-

pP= VeL=m(U+dJ x7) (181)
and finally the Hamiltonian
. L 2 L, - .
H:v-p—LZQ—(p—mwxf') +VO—§w-IRR-w:HO—wj3 (182)
m

One observes that the Coriolis potential does not appear in the Hamiltonian, which
is as it should be since the Coriolis force does not work and cannot contribute di-
rectly to the energy of a particle. It does, however, affect the trajectory of the
classical motion as it enters into the equations of motion through the canonical
momentum.

4.2 Rigid flow and non-integrable phases in quantum me-
chanics
In the cranking model one computes the wave function | ¢ ) in the rotating frame

to first order in w in using perturbation theory. One then defines the mean inertial
parameter / and the energy increment AFE by

wl = (9(t) | s [ (1) ) (183)
AE = (4(t) | H(t) [ 9(t) ) — (o | Ho | do ) (184)
where | ¢g ) = | ¢(w = 0) ). for the anisotropic oscillator and under the conditions
of self-consistency it is well known that
(¢ ]dsl¢)=wlrr (185)
and ]
AE = §w2]RR (186)
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One might thereby conjecture that the current flows might also be rigid. Indeed, as
will be see later, it is even possible to derive a cranking model wave function that
gives precisely rigid-flow currents. However, one can do so only at the expenses of
departing from the conventional requirement of quantum mechanics that the wave
function be a well-defined single-valued function on the configuration space.

Since the Schroedinger equation

H ) =[5 (F—mox 7 + Vo 56 Tan-8] | 9) =l ) (187

of the cranking model is gauge invariant, one can make the gauge transformation

o) = exp (£ 5(7) ) (1) (188)

to obtain
[ﬁ(ﬁ—mw X T+ mVS)2 +Vy— %wZRRwH ¢ Y=FE|¢") (189)
and ) )
(¢l @)=w(d | Irr | ¢ ) =w (¢0 | Zrr | ¢0) (190)

where it was assumed that ( ¢’ | j3 | ¢’ ) = 0. Similarly the energy increment
becomes

AE:%w2<¢o|fRR|¢o>+<¢,|Ho|¢/>—<¢0|H0|¢0> (191)

which is the rigid flow kinetic energy plus the energy increment induced by cen-
trifugal stretching. The current density, defined at time ¢t = 0 by

T =(¢|J]¢) (192)
where ]
J(F) = 5 07 =) P+ p (7 = )] (193)
becomes

T = (0" | e S5 — )+ (= 7)) B | 6) = W (PVS() (194

In order to take into account the entire effect of the Coriolis term one choose the

phase function such that .
J(7) = 1¢'(M*(@ x 7) (195)

Thus, without any conditions of self-consistency, one obtain rigid- flow results for
any potantial V. However for a quantal fluid the above analysis is unacceptable
because V.S = & x 7 and then

VXxVS=Vx(Jxr)=24 (196)
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It means that the Schwartz condition is not fulfiled
0% ~ b = 9%S B
oxdy 7 Oyoxr

—w (197)
and thus S(7) is not integrable. In other words, the integrale

S(F) = / (& x 7)dF (198)

is path dependent, implying that the wave function ¢(7) defined by the gauge
transformation is not single valued. In this context, recall the discussion in section
2.3 and 2.4 about the integrability of rotational collective coordiantes [Rowe 1970],
[Gulshani and Rowe 1976,1977a,b].

It is important to point out that the current is not of the rigid flow type when
the moment of inertia is assumed to take the rigid-body value.

4.3 The vortex flow of a single-particle fluid

For an arbitrary single-particle wave function ¢» = u+4v one can define the current

J(#) = [ (o) — o (7 () (199)

2mi

and the velocity field
1 -
u(r) = —=J(r 200
(7) G (7) (200)

where the density p(r) = [¢]* = u? 4+ v%. The field velocity @(r) is well defined at
all poinrs where ¢ = 0. Now it is easy to show that at such points

VX G = (VI x T+ 2y x J (201)

P p
This result indicates that the velocity-flow of any single-particle fluid is irrota-
tional whenever the wave function does not vanish. This is a familiar result in the
fluid dynamical description of a single-particle wave function [Landau and Lifschits
1967], [Kan and Griffin 1977,1978], [Gulshani and Rowe 1977a,b] where it is seen
to be a simple consequence of the fact that () can be written in the polar form

S m
() = x(7) exp[—=5(7)] (202)
x and S are defined as the smooth functions satisfying the equations
P = =ud+ 0Pty S = (203)
h u
at all points at which ¢(7) does not vanish. Thus it follows that
J(7) = pP(F)VS(7) (204)
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The field velocity is now given by

17(F)ZVS:EUVU—UV1L

205
m u?+v? (205)
Since J = p = 0 at points where ¢(7) = 0, it follows that at these points #(7) = V.S
is not defined. However, at such points the current circulation defined by

> 2
VxJ=2xVxxVS§ = %Vu x Vv (206)

does not necesarily vanish. The non-vanishing current circulations at these points
may then be interpreted as velocity vortices [Kan and Griffin 1977].

From eq.(202) one sees that ¢(7), which is an irrotational velocity field can
become singular only when y(and hence 1, or v and v) go to zero. This happens,
for example, when the nodal surfaces of u intersect the nodal surfaces v. Then
is zero on the lines of intersection. This leads to line singularities in ¢(7). .S which
is a multivalued function can be made single valued on the principal branch of
arctan, i.e. —% < arg(arctan) < 7. With this choice, terms involving the Heaviside
function are introduced in order to satisfy the convention that x in eq.(199) be
positive. From eq.(200) then

h v
S = m(arctan ” + 70(u)) (207)
where 0(x) describes a unit jump discontinuity at x = 0.

Consider the line integral of ¥(7) along a closed path I' in space. Assume that
on I'; ¥(7) has no singularity. Since ¥ = V.S, such that a closed line integral is
equal to the sum of discontinuities which S may posses along I'. As noted above
in eq.(204), discontinuities of S must have value magnitude 27h/m. This implies
that any closed line integral of ¥(7) is quantized and

2nmh
m

jéixfjdf:: (208)
where n is an integer. This quantization condition for circulation is well known[Kan
and Griffin 1977]. When T encircles no singularities of (), one must have n = 0
because the left-handside is evidently zero according to Stokes theorem:

fmmﬁz/vXamﬁ:o (209)

When I' encircles a line of singularities of #(7), the line integral (205) is generally
nonzero. Then, if one let the dimension of I' go to zero, one conclude that ¥(7)
must have an unbounded curl(vorticity) on the line of singularity, which, as one
alrady noted, is also the nodal line of 1. Following the terminology of classical
fluid dynamics one denote such a line of singularity of vorticity distribution as a
line of vortex [Batchelor 1967].
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U node

Figure 2: Relationship between a line vortex and the nodal surfaces of the real
part v and the imaginary part v of the wave function. Unit vectors a and b are
the normals of the v node and v mode. The line vortex is along the polar axis k,
which is pointing perpendicular outwards from the page.

It is worthwhile to make an anlogy with the dislocation theory in solids. From
macroscopic point of view, the deformation generated by the dislocations in a
continuum, posses in the general case the following property: when describing a
closed path I' around a line of dislocation D, the vector u of elastic displacement
performs a determined finite increasement l;equal in magnitude and direction with
one of the lattice periods. The constant vector b is called Burgers vector of the
given dislocation. This property can be expressed [Landau and Lifschits 1990)]

fdui A (210)
I I

The dislocation line represent the line of singularities of the deformed field. The
two ends of these line must be at the surface of the crystal or must be joined on a
closed loop.

Consider now a region in which a nodal surface of u intersects a nodal surface
of v. Choose an arbitrary point P along such a nodal line of 1) and consider the
irrotational velocity ¥ = V.S near this point. let 7" be the position vector measured
with respect to this point.

Consider first the simplest situation where both u and v vary linearly within a
small neighborhood of P, i.e.

u(r) = Vul—g-m=a- 7 (211)
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and .
() = Vuleg-T=0b-7 (212)

From eq.(205) one obtains

(Vo) —o(@Vu() , b 7 x (b x 7)

u(r) = = 213
() u? 4 v? m(@-7)2+ (b-7)? (213)
Let the z-direction k be the direction @ x E The normals @ and b then lie in the
xy-plane. Let the azimuthal angles of @ and b be ¢, and ¢, respectively. Equation
(210) then becomes

kxr

707 = L g(6,0) (214

From the last equation, one sees that the irrotational velocity field ¥(7) has the
following two properties:

e ¥ varies as r ! for r — 0. hence, the irrotational field is singular on the nodal

lines of .

e since 7 || k x 7, the stream lines(lines in the fluid whose tangent is everywhere
in the direction of the velocity field of the fluid) of ¥ are circles lying in the
planes perpendicular to and centered upon the nodal lines. The sense of
circulation of ¥'is about the nodal lines throughout any part of a stream line.

A familiar example of the velocity field [Milne-Thompson 1960], [Batchelor
1972] created by a line vortex in a classical, incompressible, irrotational fluid is the
velocity fluid

kx 7

r

U=\

(215)

where A is the vorticity strength and k is in the direction of the line vortex.
Comparing this equation with eq.(211), one observe that the velocity field in the
neighborhood of the line vortex in present Schroedinger fluid differs from the ve-
locity field in eq.(212) by a factor g(0, ), which depends on the angles. The
deviation of this factor from unity distinguishes a vortex in incompressible flow.
In the following section one study the details of the current circulation rather than
the singular points of the velocity field.

4.4 The current for a single particle in a rotating anisotropic
oscillator potential

The Schroedinger equation for a single particle in a rotating anisotropic oscillator

in a coordinate system rotating about the z-axis with angular velocity w is given
by
(Ho — wja)v = Evp (216)
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where

1 1 1 1
Hy = %pz + %mwfxz + %mwggf + %mwgzz (217)
and
J3 = TPy = YPe (218)
In App.E is determined to first order in w, the closed expression for
Yring (F) = (1 + Z.WX)QSM (x)¢n2 (y) (219)
where ¢, and ¢, are simple harmonic oscillator eigenfunctions (E.17)
X = a(zy + OBp.py) (220)
with ) )
mwsy + wy 2
_ e 221
howi—w}’ & m? (w3 + wi) (221)

and where the motion in the z-direction was ignored since it is not affected by the
rotation.

Note that, being of first order in w, eq.(213) includes only the effects of the
Coriolis force and ignores the quadratic centrifugal potential mw?/(x? 4 y?).

In section 4.3 it was concluded that the single-particle velocity flow is irrota-
tional everywhere except at the nodal points of the wave function where it has
vortices. Inspection of eq.(216) shows that the wave function v,,,, vanishes if

_ don, _
Gny () =0 a0 =0
and
_ don, _
Gny(2) =0 iy =0

Therefore 1,,,,, vanishes at the set of points 7, and 7, where the first suffix 0
or p denotes values of 7 at which ¢, vanishes or is maximum respectively, and
the second suffix refers similarly to ¢,,. The existence of vortices at these points
implies non-vanishing current circulations. The latter is defined as

-

C(7) =V x J(F) (222)

—

where the current J(7) in terms of 1y,,,, in (216) is given by

J(F) = —Re[}, . 0bnin,] (223)

1
m
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The J, component of the current is zero and its  and y components are found to

be

1 *
J{L’ == ERe[’l/}nlngpl'wWIWQ]

h
= G,y + 20000, (6 — Dni)) (224)
1
Jy - ERe[w:Mmpyd)nmz]
h
s CACR R M AN (225)

The first term in (219) is recognized, in terms of the velocity field, as a linear
irrotational component

JUE) = IR U = p(r)——=V(zy) (226)

Next one must show that the second term generates sets of localized clockwise
and anticlockwise current circulations at the points 7,, and 7,,. The total current
J(7) obviously vanishes at these points as is expected. One observes that J(7) also
vanishes at the point {r,,}. However, at {r,,} the velocity field also vanishes and,
as a consequence, one shall find that there are no current circulations about the
points {7}

Next, at an arbitrary point 7, only the z-component of the current circulation
is non-vanishing and this is given by

—

cr) = [VxJ@)

_ 2wah don, don,
- m . {¢n1¢n2 (gbnz dx xr — ¢n1 d'g y)

o | P (don,\’ P, (dén,
+ fn [(bm dx? <daz2> = e dx? <daz2> (227)

Evaluating C(7) at the points {7, } and {7}

3 2wl dn, (don, )\’

C(TOP) == m n2 dl‘Q dl‘Q (228)
L waBl o, (do, )

C(Tpo) = = 0m =5 | 72 (229)

Since for 7, dd,,/dy is maximum and d*¢,,/dy? is negative, therefore

C(rop) <0, a <0 (wy >we) = clockwise rotation

C(rop) >0, >0 (w1 <we) = anticlockwise rotation
for 7,0, d¢n, /dz is maximum and d?¢,, /dz? is negative, therefore
C(7po) <0, a <0 (w1 >wse) = anticlockwise rotation

C(rpo) >0, >0 (w1 <wg) = clockwise rotation
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Figure 4: The current in the x — y plane for four vortices

On therefore conclude that the first order single-particle current for the rotating
anisotropic oscillator exquibits a set of clockwise and counterclockwise rotations
with their centers forming a rectangular array. The locations of their centres are
redily determined from the zeroes and peakes of the simple harmonic oscillator
eigenfunctions ¢,, and ¢,,.

Consider some simple examples in what follows:

a) (n1,ne,nz) = (1,0,0), and 1199 for x = y = 0, and one obtain just one vortex
(fig.3a) around the origin.

b) (n1,n9,n3) = (1,1,0), and 9159 for z = 0, and y = +\/h/mw; = by, and
x = £y/h/mwy = by, y = 0. Therefore the (1,1,0) state exquibits four vortices
around the points P (O, by), Py(O, —by), P3(b1,0), Py(—by,0). The first two are
clockwise and the other two are anticlockwise (fig.3b).
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