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The classical theory of a deformable continuum has not yet exhausted the en-
tire set of fundamental problems related to the mechanical concept on these
media (problems of statical stability and three-dimensional dynamics, prob-
lems of plastic deformation). In this sense there are still available growth
factors needed for the extension of the calculations of the deformation phe-
nomena which are traditionally studied in the framework of mathematical
physics.

Stress in a body with large deformations

Consideration of large deformations impose a more ellaborate expression
of the stress state variation. In order to construct a formulation which allows
the unfolding of general properties , it is necessary to define the stress state
with respect to a reference system in space which moves with the body. In
order to determine the orientation in the selected space system, one should
introduce the the law of variation of the scalar product in this system. Thus,
let ijkvi the components

One can show that the deformed system of the supposed body corresponds
to a space of metrics

(ds)2 = gikdxidxk (1)
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where gik are functions determined by the motion. In particular, it results
that:

1. In a continuua , in the neighborhood of a point, following a deformation
of components

εij =
1

2

(
∂

∂xi
uj +

∂

∂xj
ui +

∂

∂xi
uj

∂

∂xj
ui

)
(1.1)

in the very same point, the mixed scalar product has a mixed tensorial char-
acter

αν̄i
νj
= ανi

k · αl
νj
· αk̄

l ; αk̄
l =

1√
1 + 2εkk

(
δkl +

∂ul
∂xk

)
; αi

j = δij (1.2)

This property allows the determination of the deformed system with respect
to the three variations of the selected orientations (Appendix C). In order to
substantiate the properties of the state of stress, it is neccesary to define the
reduced stress (F

νj
νi )- a quantity that multiplied with the initial (undeformed)

surface element dσνj equilibrate the real final stress applied on the deformed
surface and having the direction νi

Deformation state in a body with large deformations

The metric (3) leads to a geometrical-analytical interpretation of the state
of deformation, stressing the integrability of the displacemnt field in that
system.

Let us introduce the first-kind Riemann-Christoffel curvature tensor in
the considered space

Rαβγδ = gαλ

(
∂Γλ

βδ

∂xγ
−
∂Γλ

βγ

∂xδ
+ Γκ

βδΓ
λ
κγ − Γκ

βγΓ
λ
κδ

)
. (5.1)

where

Γλ
µν =

1

2
gλκ

(
∂gκµ
∂xν

+
∂gκν
∂xµ

− ∂gµν
∂xκ

)
(5.2)

are second-kind Christoffel symbols.
According to the defontion (C.5) of the fundamental quadratic formula-

tion
gij = δij + εij (5.3)
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one can deduce the vanishing of the curvature tensor and according to a well
known theorem :

5. The system associated to the deformation of a continuum is euclidian.
The displacement over a finite distance inside this system is integrable.

The corresponding compatibility condition

∂2εβγ
∂xα∂xδ

+
∂2εαδ
∂xβ∂xγ

− ∂2εαγ
∂xβ∂xδ

− ∂2εβδ
∂xα∂xγ

= (5.4)

∑
µ

[(εµβ,δ + εµδ,β − εβδ,µ) · (εµα,γ + εµγ,α − εαγ,µ)

− (εµβ,γ + εµγ,β − εβγ,µ) · (εµα,δ + εµδ,α − εαδ,µ)]

results from(5.1). Since the contracted Ricci-Einstein tensor Rβγ = Rα
βγα

vanish, a second fundamental compatibility condition is obtained

∂2εββ
∂x2α

+
∂2εαα
∂x2β

− 2
∂2εαβ
∂xα∂xβ

= −Hγ, α ̸= β ̸= γ (5.5)

where the sum of displacement hessians is made visible

Hγ =
∑
µ

∣∣∣∣∣∣
∂2

∂x2
α

∂2

∂xα∂xβ

∂2

∂xβ∂xα

∂2

∂x2
β

∣∣∣∣∣∣uµ (5.6)

Equations (5.4) and (5.5) together with

∂

∂xα
(εαα − εββ − εγγ) + 2

(
∂

∂xβ
εαβ −

∂

∂xγ
εαγ

)

=

(
δµα +

∂

∂xα
uµ
)
∆uµ, α ̸= β ̸= γ (5.7)

and

∂

∂xβ
εαγ −

∂

∂xγ
εαβ −

∂

∂xα
ωα =

1

2

[
∂2uµ
∂xα∂β

∂uµ
∂xγ

− ∂2uµ
∂xα∂γ

∂uµ
∂xβ

]
;

ωα =
1

2

(
∂uγ
∂xβ

− ∂uβ
∂xγ

)
(5.8)

operate a corrections to the St.Venant conditions.
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The particularity of St. Venant equations is apparent from the following
observations:

6. In the case of a deformation which satisfies the St.Venant equations,
there exist three functions u′i, (i = 1, 2, 3) - relative displacement - such that

εij =
1

2

(
∂

∂xi
u′j +

∂

∂xj
u′i

)
(6.1)

and vice versa, with these relations the compatibility conditions are staisfies,
if the effective displacements are functional dependent or harmonic, i.e.

∆ui

∣∣∣∣∣
∣∣∣∣∣∂uk∂ji

∣∣∣∣∣
∣∣∣∣∣ = 0

In general, the following notations are used

εii =
∂ui
∂xi

; εij =
1

2

(
∂

∂xi
u′j +

∂

∂xi
u′j

)
+ ε0ij, (i ̸= j)

In the case of St.Venant equations, the following identities result from
(5.8) and (5.9)

∂

∂xi

∂

∂xj
ε0ij = 0 ;

∂

∂xj
ε0ij +

∂

∂xk
ε0ik = 0

Thus, there are three harmonic functions fi(xj, xk), such that

ε0ij =
∂

∂xi
fj(xi, xk) +

∂

∂xk
fi(xj, xk)

Taking
u′i = ūi + fi(xj, xk)

and using (6.3), the above statements are fullfiled. It is also clear that:
7.If deformations are finite and admit a system of relative displacements,

then the effective displacements are functional dependent of harmonic, such
that

DŪ ≡
∣∣∣∣∣∂uj∂xi

∣∣∣∣∣ = 0 (7.1)

or

∆Ū ≡
∑
i

∂2u′i
∂x2i
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Stability of deformable continua

In what follows, we shall deduce conditions of a more general character
regarding the equilibrium of continua with large deformations including also
the instability phenomena.

17. Continuity relations and contour conditions of a body subjected to
volume and contour forces F =∥ Fi ∥ ; T ν =∥ T ′

ν ∥ generating deformations
and relative stresses

Θ =∥ δij + ∂iuj ∥ ; T =∥ Tij ∥ (17.1)

are
∂jFij = Fi ; ανjFij = Tiν (17.2)

or in matrix form
∂ΘT = F ; AΘT = T ν (17.3)

∂ =∥ ∂j ∥ , A =∥ αij ∥ (17.4)

where Fij are the reduced stresses 1

Fij = αik̄Tjk (17.5)

To demonstrate the above elations, we consider that the deformation
energy in the body’s domain G reads

EG =
∫
G
F (ui, ∂jui)dV =

∫
G
TijεijdV +

∫
G
FiuidV ; i, j = 1, 2, 3. (17.6)

Introducing the energy

EΓ = −
∫
TiνuidS (17.7)

given by contour Γ displacement, the extremuum conditions of the total
energy

E = EG + EΓ (17.8)

following a variation of the displacements, are deduced from the variational
equations of function F (Appendix A) by identifying F with E.

1αi
k̄
represents the scalar unitary product in the deformed space.

αi
k̄ =

δik + ∂kui√
1 + 2εkk
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By transposing these equations (Appendix A) with respect to the energy
expressions in G and on Γ, the continuity equations in G and on Γ are
restrained in the stated form. Equations (17.3) agree with the equations
that can be obtained from the equilibrium relations in the interior and on the
contour. Momentum equilibrium are additionaly constraining the symmetry
of the matrix T .

18.The continuity equations can be also expressed in the form

F = R1 +R2 +R3 (18.1)

R1 = ∂T , R2 = (Θ−E)∂T , R3 = (∂Θ)T

Iteration of general solutions

20. Performing the decomposition

F =
∑
i

Fi ; Tν =
∑
i

Tiν ; Θ =
∑
i

Θi ; T =
∑
i

Ti (20.1)

such that

∂Ti = Fi − ∂
i−1∑

k=i−j−1

(Θk − E)Tj ; i = 0, 1, 2 . . .

ATi = Fi −A
i−1∑

k=i−j−1

i−1∑
j=0

(Θk − E)Tj

one obtains a system of equations that once solved by iteration leads to the
solutions of the continuity and boundary equations.

Indeed by adding up one obtains eqs.(17.3). Explicitely, the iterating
relations are written

Fi = Tνi, i = 0, ∂T0 = F0 , AT0 = Tν0

∂T1 = −∂(Θ0 − E)T0 ; AT1 = −A(Θ0 − E)T0

∂T2 = −∂(Θ1 − E)T0 − ∂(Θ0 − E)T1 − ∂(Θ1 − E)T1

AT2 = −A(Θ1 − E)T0 −A(Θ0 − E)T1 −A(Θ1 − E)T1

The first two equations correspond to the classical problem of elasticity
and provides the stable solution for small deformations; the following iter-
ations correspond at each step to an elastic body in classical sense, loaded
wigh mass and contour forces

∂(Θ0 − E)T0 ; −A(Θ0 − E)T0
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−∂(Θ1 − E)T0 − ∂(Θ0 − E)T1 − ∂(Θ1 − E)T1

−A(Θ1 − E)T0 −A(Θ0 − E)T1 −A(Θ1 − E)T1

Critical state. Variational criteria for the approximate calculus

In order to build some fundamental criteria, for the determination of
the critical state, as well to exploit the methods of approximate calculus we
consider the variation δui = kiui (ki = constant) of the displacement in body
in equilibrium and acted upon by internal stresses.

We shall use the following notions determined for critical state (Appendix
B):

-internal energy corresponding to the divergence (dilations)

E1 =
1

2

∫
G
ū2i∂j∂kTjk

One can show that in the case of linear deformations we have

E1 =
3λ+ 2µ

2

∫
G
ū2i∆divudV

where the quantity ūi∆divu arise as a force in the i-th direction.;
-internal energy due to curvature variation

E2 = −
∫
Γ
ūανj∂kūiTjkūidS

(the quantity ∂j∂kūiTjk ≈ R3i is precisely the consequence of the relative
stress given by the curvature variation ∂j∂kūi);

-energy given by the variation of the contour displacement

E ′
1 =

1

2

∫
Γ
ūiανj∂kTjkūidS

(the quantity αjν∂kTjk ≈ αjνR
′
1j appears as the normal component on the

contour of the vector which results from the displacement variation over the
variation ūidS of the body’s contour).

-energy of the loads deforming the contour

E ′
2 = −

∫
Γ
ūiανj∂kūiTjkdS
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(the quantity αjν∂kTjk ≈ αjνR
′
2j appears as the normal component on the

contour of the vector which results from the deformation variation on the
contour; this component refersto the variation ūidS of the body’s volume).

With above considerations it can be shown under rather general condi-
tions that:

21. A continuum is found in a limit state of stability with respect to a
variation of the displacements if the internal energy state due to dilations or
shears accounts for the total energy variation of the displacement and contour
deformation.

E1 + E2 = E ′
1 + E ′

2

The conditions that the second variation (21.5) of the total energy is
positive, express the stability condition; its limit is vanishing. The condition
(21.5) results by identifying the function E with J (Appendix B). It also
result that

22.With respect to a vanishing variation of the displacements on the con-
tour, a continuum preserves its initial equilibrium position.

Indeed, in this case
Ei

1 = Ei
2 = 0

According to a fundamental theorem of variational calculus, the integrand
of the bellow expression is zero∫

G
ūi

[
1

2
ūi

∂2Tjk
∂xj∂xk

− ∂2ūi
∂xj∂xk

Tjk

]
dV = 0

Neglecting the continuity equations (17.3) for the case of stable equilibrium,
it results that

∂2Tjk
∂xj∂xk

= 0

(in the case of linear elasticity ∆θ = 0) and therefore,

∂2ūi
∂xj∂xk

Tjk = 0

In view of the displacements variation, we have Tjk = 0. Analogously it
results in more general terms that

23. With respect to a variation of displacements which are zero on the
contour, a continuum, with a stress state of zero divergence (∂j∂kTjk = 0 or
∆θ = 0), preserves its initial equilibrium position1.

1Compare this result with the result at 15
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These results can be state in a more general frame. Accordingly one can
show first that

24. In a stability limit state of a continuum, when the total displace-
ment and deformation energy vanishes with respect to a variation kjūj, the
divergence of the stress is equivalent to the strain given by the curvature, i.e.

1

2
ui∂j∂kTjk = ∂j∂kuiTjk (24.1)

where the coordinate system is choosen such that the variation of the energy
(in the conventional sense) given by the displacement of the body volume
vanishes ∫

G
ūidV = 0 (24.2)

The deformation energy on the contour cancels, and we have∫
G
ūi

[
1

2
ūi∂j∂kTjk − ∂j∂kūiTjk

]
dV = 0 (24.3)

According to a well known theorem from variational calculus [3] along
with eq.(24.2) the integrand of the above integral vanish.

Based on proposition (24), the above results are recovered for a variation
of the displacementwhich satisfies condition (24.2). Since in the expression
of the curvature and stress the effects of coordinate change are not present in
general conditions, eqs. (24.2) and (24.3) are satisfied for arbitrary variations,
such that

25. With respect to a displacement variation 2, a continua found in
a stress state of zero divergence (∂j∂kTjk) or ∆θ = 0), preserves its initial
equilibrium position (with small deformations) if the deformation and dis-
placement energy variation of the contour is negligible

Example

Centric stress (stable solution)

The solution is of the form

u ≈ ε− 3

2
ε2 ; ε =

p

E
; Txx =

p

1 + ε− 3
2
ε2

; Txy = Tyy = 0.

21) Under the above conditions
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Composed stress (with linear displacements)

For u = ax+ a′y, v = bx+ b′y we have

Txx = px , Tyy = py , Txy = pxa
′ ; b′ =

pxa
′

py

If a′ = b′ = 0, the elastic stable solution is obtained. One should note also
the occurence of another solution (unstable).

Pure bending

In first approximation one takes the elastic solution

u0 =
axy

E
; v0 = − a

2E
(x2 − l2 − νy2) ; T 0

xx = ay ; a =
M

l
, T 0

xy = T 0
yy = 0

In the second approximation the solution reads

T 1
xx = −a

2

E

(
y2 +

ν + 2

2

(
I

Ω
− y2

))
; T 1

yy =
a2

2E
(y2 − h2) ;T 1

xy = 0

PLANE PROBLEM OF TRANSVERSE STABILITY

d

dx
Txx +

d

dy
Txy +

d

dz
Txz = 0

d

dx
Tyx +

d

dy
Tyy +

d

dz
Tyz = 0

d

dx
Tzx+

d

dy
Tzy+

d

dz
Tzz = − (wxxTxx + wyyTyy + wzzTzz + 2wxyTxy + 2wyzTyz + 2wzxTzx)

Assuming bending we can take

Mxx = −k(wxx + νwyy) ; Mxy = −(1− ν)kwxy ; Myy = k(wyy + νwxx)

Tzx =
d

dx
Mxx +

d

dy
Mxy = −∆kwx ; Tzy = −∆kwy

k =
E

1− ν2
J ; ∆ =

d2

dx2
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and together with
d

dz
Tzz = P (x, y)

provide the continuity equations

d

dx
Txx +

d

dy
Txy = 0 ;

d

dx
Tyx +

d

dy
Tyy = 0

∆∆kw + P (x, y) = Txxwxx + 2Txywxy + Tyywyy

Solving the plane problem one can write down the stability equation

∆∆kw + P (x, y) = Fy2wxx − 2Fxywxy + Fx2wyy

where F is the Airy function. The solutions of the above equation are of
hyperbolic, parabolic or eliptic according to the sign of H(F ), which indicate
the nature of solution stability.

PLANE STABILITY PROBLEM
IN THE CASE OF LINEAR STRESS STATE

In the case of plane problem, the equilibrium equations assume the forms

(λ+ 2µ)θx − µωy + Lu = 0

(λ+ 2µ)θy + µωx + Lv = 0

L = Txx∂
2/∂x2 + 2Txy∂

2/∂x∂y + Tyy∂
2/∂y2

or

(λ+ 2µ)θx +D2u = 0

(λ+ 2µ)θy + µωx + Lv = 0

D2 = µD + L (2)

a form equivalent to

D1u+ (λ+ µ)ωy = 0

D1v − (λ+ µ)ωx = 0

D1 = (λ+ 2µ)∆ + L ; ω = vx − uy

Before all we assume the plane elasticity plane problem to be solved. Thus,
the displacements ū, v̄ and the stresses T̄xx, T̄xy, T̄yy. Therefore in the frame
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of the stability problem the supplementary displacements ¯̄u, ¯̄v and stresses
¯̄T xx,

¯̄T yx,
¯̄T yy, such that

u = ū+ ¯̄u, . . .

Txx = T̄xx +
¯̄T xx, . . .

Since Lu ≈ Lū, Lv ≈ Lv̄, the following approximate relation is valide
around the critical state

Lu ≈ Txx
∂2

∂x2
¯̄u+ 2Txy

∂2

∂x∂y
¯̄u+ Tyy

∂2

∂y2
¯̄u

We also make the assumption that the state of stable stress has a uniform
character, such that the stress fluctations around a given point can be ne-
glected ; it will be possible to admit d

dx
L() = L()x,

d
dy
L() = L()y. Taking

this into account, it results that

D1
¯̄θ = D1 ¯̄ω = D2D1 ¯̄u = D1D2¯̄v = 0

(λ+ µ)¯̄θx +D2 ¯̄u = 0

(λ+ µ)¯̄θy +D2¯̄v = 0

D1 ¯̄u+ (λ+ µ)¯̄ωy = 0

D2¯̄v − (λ+ µ)¯̄ωx = 0

where [D1, D2] = 0.
The problem of plane stability can be tackled with analytical functions.

Indeed, the function

F (z) =
∫
(P (x, y) + iQ(x, y))dz

where
P (x, y) = D1φ ; Q(x, y) = D2ψ

are analytical, and
¯̄u = φx − ψy , ¯̄v = φy + ψx

The equilibrium equations are identical to the Cauchy-Riemann relations

∂P

∂x
− ∂Q

∂y
,
∂P

∂y
+
∂Q

∂x

which indicate the conjugate harmonicity of the functions P and Q.
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It is recognized that in the case Lu = Lv = 0 one obtains the same
representation like in elasticity, when P (x, y) = (λ+ 2µ)¯̄θ ; Q(x, y) = µ ¯̄ω

The formulation of the displacements problem is reduced to the equations

∆(D1φ) = ∆(D2ψ)

and the corresponding contour conditions are

uN =
dφ

dν
− dψ

dτ
;uT =

dφ

dτ
+
dψ

dν

where
d

dν
=

d

dx
· dx
ds

+
d

dy
· dy
ds

;
d

dτ
= − d

dx
· dy
ds

+
d

dy
· dy
ds

represent the normal and tangential derivatives.

Appendix A

The minimum of a volume integral, defined over the domain G closed by
the surface Γ, of the form

J =
∫
G
F (ui, uij)dV, i, j = 1, 2, 3; uij =

∂ui

∂xj
(A.1)

is obtained by solving the equations [3]

[FG]i = 0 in G (A.2)

[Fν ]i = 0 on Γ (A.3)

where

[FG]i = Fui
−
∑
j

(
∂

∂xj
+
∑
k

ujk
∂

∂xk

)
Fuij

(A.4

[Fν ]i =
∑
j

ανiFuij
(A.5)

Above it was assumed that F and its first two derivatives are continuous.
The variational equations are obtained by varying the arguments δui = εiūi.
The parameters εi are assumed to be arbitrarly small, whereas the functions
and its first two derivatives are continuous as well, such that the functional

Φ(εi) =
∫
G
F (ui + δui, uij + δij)dG (A.6)
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satisfies the condition
(
∂Φ
∂εi

)
= 0

The minimum of the integrals

J =
∫
G
F (ui, uij)dV −

∫
Γ

∑
i

uif
i
νdS (A.7)

where f i
ν are continuous on the contour, is given by

[FG]i = −

fiν +∑
j

∂Fuij

∂xj

 (A.8)

Appendix B

The determination of a minimum of the integral (A.1) with respect to the
variations δui and consequently of function (A.2) is done by equating to zero
the second variation of the integral J , i.e.

δ2J =
∑
i

∑
j

εiεj

(
∂2Φ

∂εi∂εj

)
= 0 (B.1)

for εi = 0, i = 1, 2, 3.
Consequently,

∂2Φ

∂εi∂εj
=
∫
G

[
ūiūjFuiuj

+
∑
k

(
∂ūi
∂xk

ūjFuikuj
+ ūi

∂ūj
∂xk

ūjFuiujk
+
∂ūj
∂xk

ūjFuikujl

)]
dV

We are interested in the case when

Fuiuj
= Fuiluj

= 0 ; Fuilujk
= 0, for i ̸= j,

In this circumstance ∂2Φ
∂εi∂εj

= 0, for i ̸= j.

Instead of the relations (B.2) we have∫
G
ū2i [FG]idV ≈

∫
Γ
ū2i [Fν ]idS = 0

where

[FG]i = ūi

Fuiui
−
∑
k

∂Fuiuik

∂xk
+

1

2

∑
l,k

∂

∂xl

∂

∂xk

∂

∂ūi
Fuiluik


−
∑
l,k

∂

∂xl

∂

∂xk

∂

∂ūi
Fuiluik
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