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We review shortly the continuum mechanical approach to the excitation of col-
lective modes in homogenous nuclear matter. The main point of this treatment
is that nuclear matter around the saturation density displays characteristics
analogous to a linear elastic continuum. Giant resonances are discussed as typ-
ical cases of elastic disturbances in nuclear matter. Within such a macroscopic
approach it is possible to understand the gross properties of isoscalar electric
and magnetic resonances. We sketch also how this framework can be extended
to the case of inhomogenous nuclear matter.
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1. Introduction

Regardless of what type of continuum is assumed, fluid or elastic, an essen-
tial ingredient in solving the nuclear dynamical macroscopic equations, is
provided by the nuclear equation of state. This fundamental relation, that
in principle should be traced back to the effective nucleon-nucleon inter-
action, provides, for a transient process, a non-linear relation between the
pressure(stress) of nuclear matter and the deviations of the density from
the equilibrium value. In continuum mechanics the corresponding relation
is customarily known under the name of material law or behavior law1 . In
continuum mechanics a material law sets constraints on the forces and/or
the motions. In the case of ideal materials this law consists in particular
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relations between the stress tensor T and the movements, described by a
collective vector field (displacement) u of the body under investigation. For
linear elastic bodies this relation reads

T = λITr(ε) + 2µε; ε =
1
2

(∇u + u∇) (1)

The material law for nuclear matter near the saturation point is similar to
the one discussed above for an elastic body. This is due to the distortions
of the Fermi surface that induce non-diagonal components in the stress
tensor2 . The coefficients controlling the linear proportionality can be de-
rived in the case of nuclear matter, regardless it is homogenous or not, from
the corresponding equation of state. Considering a Skyrme like energy den-
sity functional3 and using the Thomas-Fermi approximation for the kinetic
energy density, the elastic moduli (Lame constants) are identified to be :

λ =
(

K

9
− 4

15
εF

)
n0, µ =

2
5
n0εF , n0 =

ρ0

m
(2)

In the above formula εF is the Fermi energy, which depends on the Fermi
momentum (density ρ0 at saturation) and the effective mass, and K is
the nuclear incompressibility and is completely determined by the nuclear
equation of state via the definition

K = 9
∂

∂ρ

(
ρ2 ∂ε(ρ)

∂ρ

)

ρ=ρ0

(3)

Note that the quasi-static approximation that is used frequently in the
literature4 amounts to the substitution Trε = 0 in the material law (1).
The equation of motion of a nuclear elastic body can de derived by varying
the strain energy3

ρ0ü = (λ + 2µ)∇(∇ · u) + µ∇×∇× u (4)

2. Giant Resonances in Spherical Nuclei

The credit for recognizing the elastic behavior of nuclear matter, as dis-
played in the giant resonant response, goes back to the seminal work5 . In
this paper it was pointed out that the experimentally established smooth
dependence of the energy of the isoscalar giant quadrupole resonance can
be understood as a manifestation of the irrotational and divergenceless
oscillatory mode of an elastic solid whose shear modulus equals the pres-
sure of Fermi nucleonic gas: µ = pF = 2n0εF /5. Nowadays we have quite
compelling arguments showing that both the giant electric and magnetic
resonances can be treated on equal footing as a manifestation of spheroidal
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Fig. 1. Energy centroids of the low-lying and high-lying ISGDR as reported in6 (College
Station (2001)),7 (College Station (2004)) and8 (Osaka 2003) are compared with our
calculations.

(electric) and torsional (magnetic) oscillations of an elastic sphere of nuclear
matter2 .

A first example that we want to discuss is the so-called Isoscalar Giant
Dipole Resonance (ISGDR). In ref.6 experimental results on this type of
mode were reported for the strengths in three proton magical nuclei (90Zr,
116Sn and 208Pb) using inelastic scattering of α particles at small angles
and it was concluded that the isoscalar E1 strength distribution in each
nucleus is shared mainly between two components, one located at low en-
ergy and and another one at higher energy. In a subsequent publication this
group presented new data on the ISGDR.7 For 116Sn, 144Sm and 208Pb the
low-energy peak fall in the interval (1.71−1.92)~ω whereas the high-energy
peak lays between 3~ω and 3.2~ω. The upper component covers approxi-
mately 3 times more of the energy-weighted sum rule compared to the lower
component. Similar values for the two peaks for 208Pb are given in8 : 1.80~ω
and 3.25~ω. The data for the energy centroids is ploted in Fig.1. For electric
dipole modes one have to make sure, before deriving the oscillations eigen-
frequencies spectrum, that the position of the center-of-mass Rc.m. is left
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Fig. 2. Energy centroids of isoscalar giant quadrupole and octupole electric resonaces
(upper panel), reported in10 , and magnetic resonances (lower panel), reported in11 , are
compared with the calculation of the continuum mechanics approach.

undisturbed during the perturbation. Quantitatively this constraint can be
written as

δRc.m. =
∫

drρ(r)u(r, t)∫
drρ(r)

(5)

Assuming a harmonic variation in time, with frequency Ω, of the fluctuating
parts of the density and the displacement field, the divergence and the
curl of the displacement field are satisfying the scalar and vector Helmholz
equation respectively (HE)

(
∆ +

{
k2

L

k2
T

}){∇ · u
∇× u

}
= 0 (6)

corresponding to the wave-numbers kL,T = Ω/cL,T , where cL =√
λ + 2µ/ρ0 and cT =

√
µ/ρ0. The eigenvalues are obtained by impos-

ing boundary conditions on a free surface. In9 we reported calculations of
the energy centroids of the ISGDR that are supporting the experimental
conclusions on the existence of a low-lying and a high-lying component of
this collective mode (see Fig.2).

The predictive power of the continuum mechanical approach, that we
present in this work, is demonstrated also by the fairly accurate account of
experimental systematics on the electric octupole (E3) and the magnetic
quadrupole (M2) giant resonances which is attained with no use of any
adjustable constants (see Fig.2). The giant magnetic resonances exhibiting
torsional oscillations of the nucleus is the mode of giant-resonance nuclear
response that can be understood only on the basis of the solid globe model,
not a liquid drop. Note that the in calculating these resonances we made a
further simplification, i.e. take the quasi-static limit mentioned earlier.
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Fig. 3. Effective elastic constants of isoscalar and isovector resonances for dilute nuclear
matter found in the inner crust of neutron stars. We used an equation of state designed
for rich neutron matter.13

3. Giant Resonances in Inhomogenous Nuclear Matter

The resonances discussed above have a pronounced bulk effect and con-
sequently we achieved a good agreement to the experimental data using
a continuum model with a constant density, that corresponds grossly to
the density of homogenous nuclear matter. In such circumstances reso-
nances such as pygmy resonances, involving a collective displacement of
the neutrons in the skin region of the nucleus relative to the core, cannot
be described. Another case that involves the propagation of a collective
perturbation in a inhomogenous media is found in the inner crust matter of
neutron stars where, putatively, nuclear clusters are immersed in a gas of
neutrons. Understanding the characteristics of these nuclear collective ex-
citations could be very important in the determination of the specific heat
of baryonic inner crust matter of these exotic astrophysical objects12 .

Thus, the validity of the nuclear matter continuum mechanics frame-
work must be extended to the case of highly inhomogenous nuclear matter.
To deal with such cases we propose to generalize the material law (1) to the
case of a composite continuum consisting in a number of homogenous sub-
domains, such that instead of using a single set of constants and variables
(Lamé constants, stress and strain tensors) characterizing each homogenous
region, we consider a single effective set of effective quantities. The mate-
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rial law for the composite material can written as the generalization of the
corresponding law for homogenous matter

〈T 〉 = C∗〈ε〉 (7)

where the symbol 〈. . .〉 denotes averaged quantities and the matrix ele-
ments of C∗ provide the effective elastic moduli. Evidently, they have to
be evaluated for densities far away from the saturation point. In the case
of a composite layered medium (two alternating layers, one with dilute
pure neutron matter, and another one, more dense and with non-vanishing
proton content) the behavior of the effective elastic constants of isoscalar
and isovector resonances on a typical range of nuclear matter densities is
displayed in Fig.3.

The composite approach to continuum nuclear matter can be applied
to a large number of exotic, inhomogenous structures, found in the inner
crust of neutron stars or excitations in nuclei with large n−p asymmetries.

This work is a part of the project IFIN-HH (Romania) - JINR (Russia),
grant number 3753-2007.
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