Transverse momentum distribution of hadrons in the Tsallis statistics

A.S. Parvan
DFT, Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
BLTP, Joint Institute for Nuclear Research, Russia
Transverse momentum distributions of hadrons at high energies

Experiment:

Statistical Theory:

Tsallis-factorized distribution

\[1 + (q_c - 1) \frac{\varepsilon - \mu}{T} \left[\frac{1}{1-q_c} \right]^{q_c} \]

Boltzmann-Gibbs distribution

\[q_c \to 1 \]

J. Cleymans, D. Worku,

\[\varepsilon = m_T \cosh y, \quad m_T = \sqrt{p_T^2 + m^2} \]

Is the Tsallis-factorized distribution related to the Tsallis statistics?
What is the Tsallis statistics?

1.) Definitions:

<table>
<thead>
<tr>
<th>Boltzmann-Gibbs Statistics</th>
<th>Tsallis-1 Statistics</th>
<th>Tsallis-2 Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = -\sum_i p_i \ln p_i, \quad q = 1$</td>
<td>$S = -\sum_i \frac{p_i - p_i^q}{1 - q}, \quad 0 < q < \infty$</td>
<td>$S = -\sum_i \frac{p_i - p_i^{q_c}}{1 - q_c}, \quad 0 < q_c < \infty$</td>
</tr>
<tr>
<td>$\sum_i p_i = 1$</td>
<td>$\sum_i p_i = 1$</td>
<td>$\sum_i p_i = 1$</td>
</tr>
<tr>
<td>$E = \sum_i p_i E_i$</td>
<td>$E = \sum_i p_i E_i$</td>
<td>$E = \sum_i p_i^{q_c} E_i$</td>
</tr>
<tr>
<td>$\langle N \rangle = \sum_i p_i N_i$</td>
<td>$\langle N \rangle = \sum_i p_i N_i$</td>
<td>$\langle N \rangle = \sum_i p_i^{q_c} N_i$</td>
</tr>
</tbody>
</table>

p_i — probability of i-th microstate of the system

2.) Legendre Transform:

$$
\Omega = E - TS - \mu \langle N \rangle
$$

3.) Thermodynamic potentials:

- **B-G**
 $$
 \Omega = T \sum_i p_i \left[\ln p_i + \frac{E_i - \mu N_i}{T} \right]
 $$

- **T-1**
 $$
 \Omega = T \sum_i p_i \left[\frac{1 - p_i^{q-1}}{1 - q} + \frac{E_i - \mu N_i}{T} \right]
 $$

- **T-2**
 $$
 \Omega = T \sum_i p_i^{q_c} \left[\frac{p_i^{1-q_c} - 1}{1 - q_c} + \frac{E_i - \mu N_i}{T} \right]
 $$
What is the Tsallis statistics?

4.) Constrained Local Extrema of the Thermodynamic Potential (Method of Lagrange Multipliers):

\[\Phi = \Omega - \lambda \phi, \quad \phi = \sum_i p_i - 1 = 0 \]

\[\frac{\partial \Phi}{\partial p_i} = 0 \]

- Lagrange function
- constrained equation
- extremization

5.) Many-body distribution functions (Probabilities of Microstates of the System) and the norm functions:

<table>
<thead>
<tr>
<th>Boltzmann-Gibbs Statistics</th>
<th>Tsallis-1 Statistics</th>
<th>Tsallis-2 Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>[p_i = \frac{1}{Z} \exp \left(- \frac{E_i - \mu N_i}{T} \right)]</td>
<td>[p_i = \frac{1}{Z} \left[1 + \frac{q-1}{q} \frac{\Lambda - E_i + \mu N_i}{T} \right]^{\frac{1}{q-1}}]</td>
<td>[p_i = \frac{1}{Z} \left[1 - (1 - q_c) \frac{E_i - \mu N_i}{T} \right]^{\frac{1}{1-q_c}}]</td>
</tr>
<tr>
<td>[Z = \sum_i \exp \left(- \frac{E_i - \mu N_i}{T} \right)]</td>
<td>[\sum_i \left[1 + \frac{q-1}{q} \frac{\Lambda - E_i + \mu N_i}{T} \right]^{\frac{1}{q-1}} = 1]</td>
<td>[Z = \sum_i \left[1 - (1 - q_c) \frac{E_i - \mu N_i}{T} \right]^{\frac{1}{1-q_c}}]</td>
</tr>
<tr>
<td>[\Omega = -T \ln Z = \lambda - T]</td>
<td>[\Lambda = \lambda - T]</td>
<td>[-Tq_c \frac{Z^{1-q_c} - 1}{1-q_c} = \lambda - T]</td>
</tr>
</tbody>
</table>
What is the Tsallis-factorized statistics?

Boltzmann-Gibbs Statistics

Ideal Gas (Maxwell-Boltzmann):

\[
\langle n_{\tilde{p}\sigma} \rangle = e^{\frac{\varepsilon_{p} - \mu}{T}}
\]

\[
S = -\sum_{\tilde{p}\sigma} \left[\langle n_{\tilde{p}\sigma} \rangle \ln \langle n_{\tilde{p}\sigma} \rangle - \langle n_{\tilde{p}\sigma} \rangle \right]
\]

\[
\langle N \rangle = \sum_{\tilde{p}\sigma} \langle n_{\tilde{p}\sigma} \rangle
\]

\[
E = \sum_{\tilde{p}\sigma} \langle n_{\tilde{p}\sigma} \rangle \varepsilon_{\tilde{p}}
\]

\[
\Omega = E - TS - \mu \langle N \rangle
\]

\[
= T \sum_{\tilde{p}\sigma} \langle n_{\tilde{p}\sigma} \rangle \left[\ln \langle n_{\tilde{p}\sigma} \rangle - 1 + \frac{\varepsilon_{\tilde{p}} - \mu}{T} \right]
\]

\[
\frac{\partial \Omega}{\partial \langle n_{\tilde{p}\sigma} \rangle} = 0, \quad \langle n_{\tilde{p}\sigma} \rangle = e^{\frac{\varepsilon_{p} - \mu}{T}}
\]

Tsallis-factorized Statistics

Ideal Gas (Maxwell-Boltzmann):

\[
\]

\[
q_c \quad \text{real parameter}
\]

\[
S = -\sum_{\tilde{p}\sigma} \left[f^{q_c}_{\tilde{p}\sigma} \ln_{q_c} f^{q_c}_{\tilde{p}\sigma} - f^{q_c}_{\tilde{p}\sigma} \right], \quad f^{q_c}_{\tilde{p}\sigma} \equiv \langle n_{\tilde{p}\sigma} \rangle
\]

\[
\langle N \rangle = \sum_{\tilde{p}\sigma} f^{q_c}_{\tilde{p}\sigma}
\]

\[
\ln_{q_c} (x) = \frac{x^{1-q_c} - 1}{1-q_c}, \quad 0 < q_c < \infty
\]

\[
E = \sum_{\tilde{p}\sigma} f^{q_c}_{\tilde{p}\sigma} \varepsilon_{\tilde{p}}
\]

\[
\Omega = E - TS - \mu \langle N \rangle
\]

\[
= T \sum_{\tilde{p}\sigma} f^{q_c}_{\tilde{p}\sigma} \left[q_c \ln_{q_c} f^{q_c}_{\tilde{p}\sigma} - 1 + \frac{\varepsilon_{\tilde{p}} - \mu}{T} \right]
\]

\[
\frac{\partial \Omega}{\partial f^{q_c}_{\tilde{p}\sigma}} = 0, \quad \langle n_{\tilde{p}\sigma} \rangle = \left[1 + (q_c - 1) \frac{\varepsilon_{\tilde{p}} - \mu}{T} \right]^{\frac{q_c}{1-q_c}}
\]

- The constrained maximization of the entropy of the ideal gas (generalized from the Boltzmann-Gibbs entropy of the ideal gas) with respect to the single-particle distribution function should lead to the results of the Tsallis-2 statistics
- Is it indeed the Tsallis-factorized distribution equivalent to the distribution of the Tsallis-2 statistics?
- The Tsallis-factorized statistics should be equivalent to the Tsallis-2 statistics
1. **Tsallis-2 Statistics:**

 - **Exact results:**
 \[
 Z = \frac{1}{\pi^2} \sum_{N=1}^{1-q_c} \tilde{\omega}^N N! \frac{\Gamma\left(\frac{1}{q_c-1} - 3N\right)}{(q_c-1)^{3N} \Gamma\left(\frac{1}{q_c-1}\right)} \left[1 - \left(\frac{1}{q_c-1}\right) \frac{\mu N}{T}\right]^{\frac{1}{1-q_c} + 3N}
 \]
 \[
 \langle n_{\tilde{p}\sigma} \rangle = \frac{1}{Z} \left[1 + (q_c - 1) \frac{\epsilon_p - \mu}{T}\right]^{\frac{q_c}{1-q_c}} + \frac{1}{Z} \sum_{N=1}^{1-q_c} \tilde{\omega}^N N! \frac{\Gamma\left(\frac{q_c}{q_c-1} - 3N\right)}{(q_c-1)^{3N} \Gamma\left(\frac{q_c}{q_c-1}\right)} \left[1 + (q_c - 1) \frac{\epsilon_p - \mu(N+1)}{T}\right]^{\frac{q_c}{1-q_c} + 3N}
 \]

 - **Zeroth term approximation:**
 \[
 N = 0, \quad Z = 1
 \]
 \[
 \langle n_{\tilde{p}\sigma} \rangle = \left[1 + (q_c - 1) \frac{\epsilon_p - \mu}{T}\right]^{\frac{q_c}{1-q_c}}
 \]

2. **Tsallis-factorized Statistics:**

 - The constrained maximization of the Tsallis-factorized entropy of the ideal gas (generalized from the Boltzmann-Gibbs entropy of the ideal gas) with respect to the single-particle distribution function does not lead to the true results for the Tsallis-2 statistics.

 - **Exact results:**
 \[
 \langle n_{\tilde{p}\sigma} \rangle = \left[1 + (q_c - 1) \frac{\epsilon_p - \mu}{T}\right]^{\frac{q_c}{1-q_c}}
 \]

 - **Zeroth term approximation:**
 \[
 \langle n_{\tilde{p}\sigma} \rangle = \left[1 + (q_c - 1) \frac{\epsilon_p - \mu}{T}\right]^{\frac{q_c}{1-q_c}}
 \]

- The partition function is divergent
- We truncate the series
- In the partition function and the mean occupation numbers only the physical terms are preserved
- The mean occupation numbers in the Tsallis-2 statistics
- The zeroth term approximation is valid only for \(q_c > 3/2 \)
- The Tsallis-factorized distribution is not equivalent to the distribution of the Tsallis-2 statistics
- The Tsallis-factorized statistics is not equivalent to the Tsallis-2 statistics
- The Tsallis-factorized statistics can serve as a particular statistics independent from the Tsallis statistics

References:

Ultrarelativistic Ideal Gas: Tsallis-1 statistics $q < 1$

- **The norm equation:**
 - The norm equation is divergent

 $\sum_{N=0}^{N_0} \phi(N) + \sum_{N=N_0+1}^{\infty} \phi(N) = 1$

 $\phi(N) = \frac{\tilde{\omega}^N}{N!} \left(\frac{q}{1-q} \right)^{3N} \frac{\Gamma \left(\frac{1}{1-q} - 3N \right)}{\Gamma \left(\frac{1}{1-q} \right)} \left[1 + \frac{q-1}{q} \frac{\Lambda + \mu N}{T} \right]^{\frac{1}{q-1}+3N}$

 $\tilde{\omega} = \frac{gVT^3}{\pi^2}$

 $T = 100MeV$, $R = 4 fm$, $\mu = 0$

- **Regularization:**
 - We truncate the series
 - In the norm equation only the physical terms are preserved

 $\sum_{N=0}^{N_0} \phi(N) + \sum_{N=N_0+1}^{\infty} \phi(N) = 1$

- **The cut-off prescription:**
 - The inflection point

 $\frac{\partial^2 \ln \phi(N)}{\partial N^2} \bigg|_{N=N_0} = 0$

 N_0 — the upper bound of summation

- **Table:**

<table>
<thead>
<tr>
<th>q</th>
<th>0.9</th>
<th>0.95</th>
<th>0.99</th>
<th>0.995</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>16</td>
<td>82</td>
</tr>
</tbody>
</table>
Ultrarelativistic Ideal Gas: Tsallis-1 statistics

1. Tsallis-1 Statistics:

Exact results:

\[
\langle n_{\tilde{p}\sigma} \rangle = \left[1 + \frac{q-1}{q} \frac{\Lambda - \varepsilon_{\tilde{p}} + \mu}{T} \right]^{\frac{1}{q-1}} + \sum_{N=1}^{N_0} \tilde{\omega}^N \frac{\Gamma \left(\frac{1}{1-q} \right)}{N!} \left[1 + \frac{q-1}{q} \frac{\Lambda + \mu N}{T} \right]^{\frac{1}{q-1}+3N} = 1
\]

- The mean occupation numbers in the Tsallis-1 statistics

Zeroth term approximation: (Definition: All terms with \(N \geq 1 \) in the series given above are deleted by hand)

\[
N = 0, \quad \Lambda = 0
\]

\[
\langle n_{\tilde{p}\sigma} \rangle = \left[1 + \frac{q-1}{q} \frac{\varepsilon_{\tilde{p}} - \mu}{T} \right]^{\frac{1}{q-1}}
\]

2. Tsallis-factorized Statistics:

- The Tsallis-factorized distribution is not equivalent to the distribution of the Tsallis-1 statistics

The mean occupation numbers of the Tsallis-factorized statistics

\[
\langle n_{\tilde{p}\sigma} \rangle = \left[1 + (q_c - 1) \frac{\varepsilon_{\tilde{p}} - \mu}{T} \right]^{\frac{q_c}{1-q_c}}
\]

- The Tsallis-factorized statistics is not equivalent to the Tsallis statistics (Tsallis-1 and Tsallis-2 statistics)

\[q \to 1 / q_c\]

Comparison of Tsallis-factorized statistics with Tsallis-1 statistics: Charged pions

\(p + p \)

A.S.P., arXiv:1608.01888

Ultrarelativistic distributions of the Tsallis-1 statistics:

\[
\frac{d^2 N}{dp_T\,dy} \bigg|_{\gamma_0} = \frac{gV}{(2\pi)^2} p_T^2 \int_{\gamma_0} dy \cosh y \sum_{N=0}^{N_0} \tilde{\omega}^N \frac{q}{1-q} \frac{\Gamma \left(\frac{1}{1-q} - 3N \right)}{N!} \frac{1}{\Gamma \left(\frac{1}{1-q} \right)} \left[1 + \frac{q-1}{q} \Lambda - p_T \cosh y + \mu(N+1) \right]^{\frac{1}{q-1} + 3N} \]

\[
\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T\,dy} = -\frac{gV}{(2\pi)^3} p_T \cosh y \sum_{N=0}^{N_0} \tilde{\omega}^N \frac{q}{1-q} \frac{\Gamma \left(\frac{1}{1-q} - 3N \right)}{N!} \frac{1}{\Gamma \left(\frac{1}{1-q} \right)} \left[1 + \frac{q-1}{q} \Lambda - p_T \cosh y + \mu(N+1) \right]^{\frac{1}{q-1} + 3N} \]
Comparison of Tsallis-factorized statistics with Tsallis-1 statistics: Charged pions

\[p + p \]

Ultrarelativistic distributions of the Tsallis-1 statistics:

\[
\frac{d^2N}{d\ln p_T dy} \bigg|_{y_0} = \frac{gV}{(2\pi)^2} p_T^2 \int_{y_0}^{y_1} dy \cosh y \left(\sum_{N=0}^{N_N} (\frac{q}{1-q})^N \right) \frac{\Gamma \left(\frac{1}{1-q} - 3N \right)}{\Gamma \left(\frac{1}{1-q} \right)}
\]

\[
\frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} \bigg|_{y_0} = \frac{gV}{(2\pi)^2} p_T \int_{y_0}^{y_1} dy \cosh y \left(\sum_{N=0}^{N_N} (\frac{q}{1-q})^N \right) \frac{\Gamma \left(\frac{1}{1-q} - 3N \right)}{\Gamma \left(\frac{1}{1-q} \right)}
\]

\[
\left[1 + \frac{q-1}{q} \Lambda - p_T \cosh y + \mu(N+1) \right]^{\frac{1}{q-1} + 3N}
\]

A.S.P., arXiv:1608.01888
Energy dependence of the parameters of the Tsallis-1 statistics and the Tsallis-factorized statistics

\(p + p \)

\[\frac{d^2N}{dp_T dy} = \frac{gVp_T^2 \cosh y}{(2\pi)^2} \left[1 + (q_c - 1) \frac{p_T \cosh y - \mu}{T} \right]^{q_c} \]

Solid points – Tsallis-1 statistics
Open symbols – Tsallis-factorized statistics

Tsallis-factorized distribution
(the zeroth term approximation, \(q_c = \frac{1}{q} \))

A.S.P., arXiv:1608.01888
Parameters of the Tsallis-1 statistics fit for the pions produced in pp collisions at different energies

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Type</th>
<th>\sqrt{s}, GeV</th>
<th>T, MeV</th>
<th>R, fm</th>
<th>q</th>
<th>χ^2/ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA61/SHINE</td>
<td>π^-</td>
<td>6.3</td>
<td>85.78±10.79</td>
<td>4.047±0.235</td>
<td>0.9623±0.0142</td>
<td>2.821/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>π^-</td>
<td>7.7</td>
<td>79.05±8.01</td>
<td>4.304±0.204</td>
<td>0.9505±0.0107</td>
<td>1.472/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>π^-</td>
<td>8.8</td>
<td>82.01±9.28</td>
<td>4.294±0.212</td>
<td>0.9542±0.0123</td>
<td>1.821/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>π^-</td>
<td>12.3</td>
<td>75.47±7.41</td>
<td>4.627±0.253</td>
<td>0.9451±0.0083</td>
<td>1.152/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>π^-</td>
<td>17.3</td>
<td>95.83±6.38</td>
<td>4.798±0.246</td>
<td>0.9326±0.0166</td>
<td>0.865/15</td>
</tr>
<tr>
<td>PHENIX</td>
<td>π^+</td>
<td>62.4</td>
<td>97.62±11.92</td>
<td>3.744±0.648</td>
<td>0.9197±0.0093</td>
<td>1.654/23</td>
</tr>
<tr>
<td>PHENIX</td>
<td>π^-</td>
<td>62.4</td>
<td>93.76±11.69</td>
<td>3.971±0.716</td>
<td>0.9184±0.0091</td>
<td>0.878/23</td>
</tr>
<tr>
<td>PHENIX</td>
<td>π^+</td>
<td>200.0</td>
<td>79.89±11.80</td>
<td>4.247±0.899</td>
<td>0.8894±0.0082</td>
<td>0.987/24</td>
</tr>
<tr>
<td>PHENIX</td>
<td>π^-</td>
<td>200.0</td>
<td>87.20±11.48</td>
<td>3.823±0.714</td>
<td>0.8965±0.0081</td>
<td>0.691/24</td>
</tr>
<tr>
<td>ALICE</td>
<td>π^+</td>
<td>900.0</td>
<td>82.72±2.01</td>
<td>3.965±0.069</td>
<td>0.8766±0.0037</td>
<td>3.609/30</td>
</tr>
<tr>
<td>ALICE</td>
<td>π^-</td>
<td>900.0</td>
<td>83.92±2.02</td>
<td>3.918±0.068</td>
<td>0.8790±0.0036</td>
<td>1.610/30</td>
</tr>
<tr>
<td>ALICE</td>
<td>$\pi^+ + \pi^-$</td>
<td>2760.0</td>
<td>90.61±1.45</td>
<td>3.496±0.057</td>
<td>0.8726±0.0012</td>
<td>12.18/60</td>
</tr>
<tr>
<td>ALICE</td>
<td>$\pi^+ + \pi^-$</td>
<td>7000.0</td>
<td>78.75±1.86</td>
<td>4.606±0.093</td>
<td>0.8533±0.0024</td>
<td>9.775/38</td>
</tr>
</tbody>
</table>

A.S.P., arXiv:1608.01888
Parameters of the Tsallis-factorized statistics

\(p + p \)

A.S.P., arXiv:1608.01888

Parameters of the fit by the distribution of the Tsallis-factorized statistics (the zero term approximation of Tsallis-1 statistics) for the pions produced in pp collisions at different energies

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Type</th>
<th>(\sqrt{s}, \text{ GeV})</th>
<th>(T, \text{ MeV})</th>
<th>(R, \text{ fm})</th>
<th>(q)</th>
<th>(q_c = 1/q)</th>
<th>(\chi^2/\text{ndf})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA61/SHINE</td>
<td>(\pi^-)</td>
<td>6.3</td>
<td>99.59±7.32</td>
<td>4.045±0.234</td>
<td>0.9563 0.0190</td>
<td>1.0457±0.0208</td>
<td>2.825/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>(\pi^-)</td>
<td>7.7</td>
<td>96.93±6.49</td>
<td>4.300±0.222</td>
<td>0.9400 0.0171</td>
<td>1.0638±0.0194</td>
<td>1.481/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>(\pi^-)</td>
<td>8.8</td>
<td>99.37±6.29</td>
<td>4.290±0.204</td>
<td>0.9455 0.0172</td>
<td>1.0576±0.0193</td>
<td>1.838/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>(\pi^-)</td>
<td>12.3</td>
<td>95.92±6.29</td>
<td>4.619±0.228</td>
<td>0.9324 0.0170</td>
<td>1.0725±0.0196</td>
<td>1.175/15</td>
</tr>
<tr>
<td>NA61/SHINE</td>
<td>(\pi^-)</td>
<td>17.3</td>
<td>95.83±6.38</td>
<td>4.798±0.246</td>
<td>0.9326 0.0166</td>
<td>1.0722±0.0191</td>
<td>0.865/15</td>
</tr>
<tr>
<td>PHENIX</td>
<td>(\pi^+)</td>
<td>62.4</td>
<td>97.62±11.92</td>
<td>3.744±0.648</td>
<td>0.9197 0.0093</td>
<td>1.0874±0.0110</td>
<td>1.654/23</td>
</tr>
<tr>
<td>PHENIX</td>
<td>(\pi^-)</td>
<td>62.4</td>
<td>93.76±11.69</td>
<td>3.971±0.715</td>
<td>0.9184 0.0091</td>
<td>1.0888±0.0108</td>
<td>0.878/23</td>
</tr>
<tr>
<td>PHENIX</td>
<td>(\pi^+)</td>
<td>200.0</td>
<td>79.89±11.81</td>
<td>4.247±0.899</td>
<td>0.8894 0.0082</td>
<td>1.1244±0.0104</td>
<td>0.987/24</td>
</tr>
<tr>
<td>PHENIX</td>
<td>(\pi^-)</td>
<td>200.0</td>
<td>87.20±11.49</td>
<td>3.823±0.714</td>
<td>0.8965 0.0081</td>
<td>1.1155±0.0101</td>
<td>0.691/24</td>
</tr>
<tr>
<td>ALICE</td>
<td>(\pi^+)</td>
<td>900.0</td>
<td>82.72±2.01</td>
<td>3.965±0.069</td>
<td>0.8766 0.0037</td>
<td>1.1408±0.0048</td>
<td>3.609/30</td>
</tr>
<tr>
<td>ALICE</td>
<td>(\pi^-)</td>
<td>900.0</td>
<td>83.92±2.02</td>
<td>3.918±0.068</td>
<td>0.8790 0.0036</td>
<td>1.1376±0.0047</td>
<td>1.610/30</td>
</tr>
<tr>
<td>ALICE</td>
<td>(\pi^+ + \pi^-)</td>
<td>2760.0</td>
<td>90.61±1.45</td>
<td>3.496±0.057</td>
<td>0.8726 0.0012</td>
<td>1.1460±0.0016</td>
<td>12.18/60</td>
</tr>
<tr>
<td>ALICE</td>
<td>(\pi^+ + \pi^-)</td>
<td>7000.0</td>
<td>78.75±1.86</td>
<td>4.606±0.093</td>
<td>0.8533 0.0024</td>
<td>1.1719±0.0032</td>
<td>9.775/38</td>
</tr>
</tbody>
</table>

- The results of the Tsallis-factorized statistics (the zeroth term approximation of the Tsallis-1 statistics) deviate from the results of the Tsallis-1 statistics only at low NA61/SHINE energies when the value of the parameter \(q \) is close to unity.
- At higher energies, when the value of the parameter \(q \) deviates essentially from the unity, the Tsallis-factorized statistics satisfactorily recovers the results of the Tsallis-1 statistics because at this values of \(q \) in the series of the Tsallis-1 statistics only one term \(N = 0 \) is physical.
Conclusions

1. The analytical expressions for the ultrarelativistic transverse momentum distribution of the Tsallis-1 and Tsallis-2 statistics were obtained.

2. We found that the transverse momentum distribution of the Tsallis-factorized statistics in the ultrarelativistic case is not equivalent to the transverse momentum distribution of both the Tsallis-1 and Tsallis-2 statistics.

3. The transverse momentum distribution of the Tsallis-factorized statistics is equivalent only to the distribution in the zeroth term approximation of the Tsallis-2 statistics and the Tsallis-1 statistics with transformation of the parameter q to $1/q$.

4. We have demonstrated on the base of the ultrarelativistic ideal gas that the Tsallis–factorized statistics is not equivalent to the Tsallis statistics (Tsallis-1 and Tsallis-2 statistics).

5. The Tsallis-factorized statistics is a particular statistics independent from the Tsallis statistics (Tsallis-1 and Tsallis-2 statistics).
Thank you for your attention