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Hadronic vacuum polarization

e Electromagnetic current J#(x) of light hadrons (7 and K mesons)

e Lorentz-invariant vacuum polarization amplitude M(s):
_i/d4x (0| T{J"(x), I (0)}10) = (¢"¢" — &"a") N(s), s=¢’

e Causality and unitarity: for s > 4m?2, (s) is complex and

+

ImM(s) = o(e"e” — hadrons), ImTI(s) ~ o(r — v,-hadrons)
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ImM(s) = o(e"e” — hadrons), ImTI(s) ~ o(r — v,-hadrons)

e Perturbative QCD: Feynman graphs with free quark and gluon lines

(O -~

e strong coupling g at each quark-gluon vertex
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Hadronic vacuum polarization
e Electromagnetic current J#(x) of light hadrons (7 and K mesons)

e Lorentz-invariant vacuum polarization amplitude M(s):
_i/d4x (0| T{J"(x), I (0)}10) = (¢"¢" — &"a") N(s), s=¢’

e Causality and unitarity: for s > 4m?2, (s) is complex and

+

ImM(s) = o(e"e” — hadrons), ImTI(s) ~ o(r — v,-hadrons)

e Perturbative QCD: Feynman graphs with free quark and gluon lines

(O -~

e strong coupling g at each quark-gluon vertex

e State of the art: calculations in perturbative QCD up to five-loop order

2

N(s) ~ a2, as =5
41
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Perturbative QCD

e Renormalization-group invariant quantity (Adler function)
dr(s)
ds ’

e Standard expansion in powers of the renormalized coupling as(u?):

D(s) = Yo (aslw?)/m)" S kel L= In(—s/1s)

D(s) = —s D(s) = 47°D(s) — 1.

n>1
o Renormalization-group improved expansion: > = —s >0 =
5(5) = Z cnn (as(=s)/m)", as(—s) : “running coupling”
n>1
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Perturbative QCD

e Renormalization-group invariant quantity (Adler function)
dr(s)
ds ’

e Standard expansion in powers of the renormalized coupling as(u?):

D(s) = Yo (aslw?)/m)" S kel L= In(—s/1s)

D(s) = —s D(s) = 47°D(s) — 1.

n>1
o Renormalization-group improved expansion: > = —s >0 =
5(5) = Z cnn (as(=s)/m)", as(—s) : “running coupling”
n>1

o Coefficients calculated in MS renormalization scheme:

]qJ:L C1 =1.640, c31=6.371, o1 =49.076

e Higher-order calculations not foreseen in the near future

e Estimates of next coefficients of interest for testing the Standard Model at
intermediate energies  motivation of the present work!
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Perturbative QCD

e Renormalization-group invariant quantity (Adler function)
dr(s)
ds ’

e Standard expansion in powers of the renormalized coupling as(u?):

D(s) = Yo (aslw?)/m)" S kel L= In(—s/1s)

D(s) = —s D(s) = 47°D(s) — 1.

n>1
o Renormalization-group improved expansion: > = —s >0 =
5(5) = Z cnn (as(=s)/m)", as(—s) : “running coupling”
n>1

o Coefficients calculated in MS renormalization scheme:

]qJ:L C1 =1.640, c31=6.371, o1 =49.076

e Higher-order calculations not foreseen in the near future

e Estimates of next coefficients of interest for testing the Standard Model at
intermediate energies  motivation of the present work!

e Large-order behaviour: | ¢, 1 ~ n! for n — oo
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Problems of perturbative QCD

e The description of physical hadronic observables is not straightforward

e The expansions truncated at finite orders depend on the renormalization
scheme and scale

e Perturbative QCD is valid in the Euclidian region s < 0, far from the
hadronic thresholds

e Hadron observables are measured in the Minkowskian region s > 0

e An analytic continuation in the momentum plane is required
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e The expansions truncated at finite orders depend on the renormalization
scheme and scale

e Perturbative QCD is valid in the Euclidian region s < 0, far from the
hadronic thresholds

e Hadron observables are measured in the Minkowskian region s > 0

e An analytic continuation in the momentum plane is required

e The series is divergent (has zero radius of convergence)

e The expanded functions are singular at the origin of the coupling plane

e The perturbative series is an asymptotic expansion for as(;zz) — 04
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Problems of perturbative QCD

e The description of physical hadronic observables is not straightforward

e The expansions truncated at finite orders depend on the renormalization
scheme and scale

e Perturbative QCD is valid in the Euclidian region s < 0, far from the
hadronic thresholds

e Hadron observables are measured in the Minkowskian region s > 0
e An analytic continuation in the momentum plane is required
e The series is divergent (has zero radius of convergence)

e The expanded functions are singular at the origin of the coupling plane

e The perturbative series is an asymptotic expansion for as(;zz) — 04

e Additional terms might be necessary for recovering the exact function
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Hyperasymptotics, transseries, resurgence

e Consider an asymptotic expansion for z — 04 to a continuous function F(z):
N

F(z) ~ aotaiz+a 2’ +. .. \F(z)—z a2 = 0", N=1,2,... z— 0,
0

e Remark: for an arbitrary ¢ > 0

e /P n040xz4+0x22+... (z>0)

e We can add to an asymptotic series an arbitrary exponentially-small term

F(z) ~ap+ a1z + axz® 4 ... + e~ /%, z— 04
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Hyperasymptotics, transseries, resurgence

e Consider an asymptotic expansion for z — 04 to a continuous function F(z):
N

F(z) ~ aotaiz+a 2’ +. .. \F(z)—z a2 = 0", N=1,2,... z— 0,
0

e Remark: for an arbitrary ¢ > 0

e /P n040xz4+0x22+... (z>0)

e We can add to an asymptotic series an arbitrary exponentially-small term

F(z) ~ap+ a1z + axz® 4 ... + e~ /%, z— 04

e Hyperasymptotics

e expand a well behaved function as an asymptotic (divergent) series
e add terms exponentially-small in the coupling of the original series
e add terms exponentially-small in the coupling of the second series

e continue the process ( “transseries”)

o this will allow the expanded function to “resurge”
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Hyperasymptotics in QCD

e The dependence of the coupling on the scale ;i given by RGE:

d
— 12555 = Blas) = fo ol + fral + Frak + fral +
o The running coupling to one-loop: |s = —Q?
as(@%) ~ W (exhibits “asymptotic freedom™)

Higher-order perturbative coefficients in QCD from series acceleration by conf



Hyperasymptotics in QCD

e The dependence of the coupling on the scale ;i given by RGE:

d
— 12555 = Blas) = fo ol + fral + Frak + fral +
o The running coupling to one-loop: |s = —Q?
as(@%) ~ W (exhibits “asymptotic freedom™)

e For z=0as(Q?) = exponentially small terms give power corrections:

—c/z —c/as(Q?) 1
e = e ~
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Hyperasymptotics in QCD

e The dependence of the coupling on the scale ;i given by RGE:

d
— 12555 = Blas) = fo ol + fral + Frak + fral +
o The running coupling to one-loop: |s = —Q?
as(@%) ~ W (exhibits “asymptotic freedom™)

e For z=0as(Q?) = exponentially small terms give power corrections:

—c/z —c/as(Q?) 1
e = e ~

e For z=1/Q% = exponentially decreasing corrections e/ =e

_ CQZ
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Hyperasymptotics in QCD

e The dependence of the coupling on the scale ;i given by RGE:

d
— 12555 = Blas) = fo ol + fral + Frak + fral +
o The running coupling to one-loop: |s = —Q?
as(@%) ~ W (exhibits “asymptotic freedom™)

e For z=0as(Q?) = exponentially small terms give power corrections:

—c/z —c/as(Q?) 1
e = e ~

2
e For z=1/Q% = exponentially decreasing corrections e /F =R
= Hyperasymptotic perturbative expansion in QCD:
~ —FQ?
S)ZZC“(O‘S )/m)" + Zsz + ZDJe ’
n>1 k>1 j>1
pure PT " power corrections” "duality violating” terms
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Laplace-Borel transform

e Starting from a factorially divergent series, define a convergent series:

N n o = n _ Cny11
ngcn11(<xs/7r) = BD(U)fgbnu , b, = 30
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Laplace-Borel transform

e Starting from a factorially divergent series, define a convergent series:

AN _ n _ S n _ Cnt11
Df";cml(as/ﬁ) = BD(u)fgbnu, by = B

e The large-order behaviour encoded in the singularities of Bp(u)

e branch-points on the real semiaxis u > 2 (infrared renormalons)

e branch-points on the real semiaxis u < —1 (ultraviolet renormalons)

e The nature of the first branch points at u = —1 and u = 2 is known:
Bp(u) = O((1 4+ u)™™), 7 =121
Bp(u) = O((1 — u/2)™™), Y2 = 2.58
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Laplace-Borel transform

e Starting from a factorially divergent series, define a convergent series:

N n o = n _ Cny11
ngcn11(<xs/7r) = BD(U)fgbnu , b, = 30

e The large-order behaviour encoded in the singularities of Bp(u)

e branch-points on the real semiaxis u > 2 (infrared renormalons)

e branch-points on the real semiaxis u < —1 (ultraviolet renormalons)

e The nature of the first branch points at u = —1 and u = 2 is known:
Bp(u) = O((1 4+ u)™™), 7 =121
Bp(u) = O((1 — u/2)™™), Y2 = 2.58

imy
Convergence circle

e Convergence region in the u plane:

.
z
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Singularities in the Borel plane and hyperasymptotics

Recover the original function by the Laplace-Borel integral

5(5) = % O/Ooexp (ﬁb) Bp(u) du

e The integral is not defined due to the singularities of Bp(u) for u > 2
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Singularities in the Borel plane and hyperasymptotics

Recover the original function by the Laplace-Borel integral

5(5) = % O/Ooexp (ﬁb) Bp(u) du

e The integral is not defined due to the singularities of Bp(u) for u > 2

e The first singularity at u = 2 can be related to a power correction:

5(s>=5100/...du+o(exp (ﬁf@))) o
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Singularities in the Borel plane and hyperasymptotics

Recover the original function by the Laplace-Borel integral

f)(s) = % O/Ooexp (ﬁb) Bp(u) du

e The integral is not defined due to the singularities of Bp(u) for u > 2

e The first singularity at u = 2 can be related to a power correction:

5(s>=ﬂ100/...du+o(exp (ﬂa—i(zm)) o

e The exponential corrections (quark-hadron duality violating terms) can be
also related to singularities in a Borel complex plane
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Singularities in the Borel plane and hyperasymptotics

Recover the original function by the Laplace-Borel integral

5(5) = % O/Ooexp (ﬁb) Bp(u) du

e The integral is not defined due to the singularities of Bp(u) for u > 2

e The first singularity at u = 2 can be related to a power correction:

5(s>=5100/...du+o(exp (ﬂa—i(za))) o

e The exponential corrections (quark-hadron duality violating terms) can be
also related to singularities in a Borel complex plane

e The standard expansions fail to deal with the singularities in the Borel plane

=> Consider alternative expansions which implement these singularities
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Series acceleration by conformal mappings

o Series acceleration: increase the convergence domain and the convergence
rate of an expansion

e A power series convergent in a disk of positive radius around the origin, is
replaced by a series in powers of another variable, which performs the
conformal mapping of the original complex plane (or a part of it) onto a
disk of radius equal to unity
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Series acceleration by conformal mappings

o Series acceleration: increase the convergence domain and the convergence
rate of an expansion

e A power series convergent in a disk of positive radius around the origin, is
replaced by a series in powers of another variable, which performs the
conformal mapping of the original complex plane (or a part of it) onto a
disk of radius equal to unity

Larger domain mapped onto the unit disk = higher convergence rate

u—plane
O ‘ﬁ
an,1 (21(u))"

an2 (EQ(U)"

zi-plane

Optimal conformal mapping /(u): whole holomorphy domain = |w| < 1
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Optimal conformal mapping of Borel plane

2 Re u =

Achieved by w = w(u), w(0) = 0, and the inverse i(w):

() = SV () = e

T 3—2w+3w?

v= VITuty/1-u/2

(IC & Fischer, 1999)
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Optimal conformal mapping of Borel plane

oo ' 0 - Re u = 0 Re w
wl

Achieved by w = w(u), w(0) = 0, and the inverse i(w):

~ Vitu—y/1—u/2 ~ w .
W(U) = m U(W) = JIW (|C & F|5Cher, 1999)

e Optimal expansion of the Borel transform:

BD(u):Zb,,u" = BD(u):chW"

n>0 n>0
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Optimal conformal mapping of Borel plane

o ' 0 - Re u = 0 Re w
wl

Achieved by w = w(u), w(0) = 0, and the inverse i(w):

~ Vitu—y/1—u/2 ~ w .
W(U) = m U(W) = JIW (|C & F|5Cher, 1999)

e Optimal expansion of the Borel transform:

BD(u):Zb,,u" = BD(u):chW"

n>0 n>0

e Optimal expansion with singularity softening (s.s.):

1
BD(U) = > > E E,, Wn
(14 w)?n(1 — w)?>n =
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Mapping which accounts only for the UV reormalons

Re u

Achieved by v = ¥(u), ¥(0) = 0, and the inverse @(v):

v = YL () = g%
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Mapping which accounts only for the UV reormalons

Re u

Achieved by v = ¥(u), ¥(0) = 0, and the inverse @(v):

v = YL () = g%

o Alternative expansion of the Borel transform:
Bp(u) = Z fav",
n>0

e Expansion with singularity softening:

1 n
Bole) = vy — /o 2
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Prediction of higher-order coefficients

e Four known coefficients ¢,1, 1 < n <4 = four coefficients b,, 0 < n <3
e Can one predict higher-order coefficients?
e Use theoretical knowledge on the expanded function

e The series acceleration by conformal mappings is a suitable framework

Higher-order perturbative coefficients in QCD from series acceleration by conf



Prediction of higher-order coefficients

e Four known coefficients ¢,1, 1 < n <4 = four coefficients b,, 0 < n <3

e Can one predict higher-order coefficients?

e Use theoretical knowledge on the expanded function

e The series acceleration by conformal mappings is a suitable framework

Algorithm:

start from the expansion of Bp(u) in powers of u truncated at order N — 1
insert u = T(w) in this truncated expansion

expand its product with the global prefactor (1 + w)?" (1 — w)*2 in
powers of w to the same order N — 1

reexpand in powers of u the ratio of this truncated expansion to the
factors (1 + w)*" (1 — w)>?
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Prediction of higher-order coefficients

e Four known coefficients ¢,1, 1 < n <4 = four coefficients b,, 0 < n <3

e Can one predict higher-order coefficients?

e Use theoretical knowledge on the expanded function

e The series acceleration by conformal mappings is a suitable framework

Algorithm:

start from the expansion of Bp(u) in powers of u truncated at order N — 1
insert u = T(w) in this truncated expansion

expand its product with the global prefactor (1 + w)?" (1 — w)*2 in
powers of w to the same order N — 1

reexpand in powers of u the ratio of this truncated expansion to the
factors (1 + w)*" (1 — w)>?

=

recover the first N input coefficients

obtain also definite values for the higher-order coefficients
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Test at large orders

Coefficient cy ;1 from input ¢, 1, n < N — 1 for a mathematical model

N Series in v" Series in w” v" and s.s. w” and s.s. Exact cy ;1

4 —52.34 —17.61 14.77 17.85 49.076

5 —932.45 —270.46 255.98 255.73 283.

6 —14348.46 —2290.94 3096.35 2928.76 3275.45

7 —274384. —39054.7 15740.1 16308.73 18758.4

8 —5.12 x 10° —272605.1 350336.4 381151.6 388445.6

9 —1.14 x 10° —6.89 x 10° 455072.1 963059.1 919119.2

10 —2.56 x 10° —1.424 x 10" | 7.82 x 107 8.49 x 107 8.37 x 107
11 —6.68 x 10  —1.78 x 10° —5.74 x 10° —5.04 x 10° —5.19 x 10°
12 —1.76 x 102 1.66 x 10%° 3.36 x 10'° 3.39 x 10'° 3.38 x 10'°
13 —5.20 x 10¥*  —8.47 x 10" —5.80 x 10! —6.04 x 10! | —6.04 x 10"
14 —1.61 x 10*®  1.98 x 103 2.42 x 10 2.34 x 10%° 2.34 x 10%°
15 —5.48 x 10®  —7.09 x 10* —6.24 x 10"  —6.53 x 10" | —6.52 x 10**
16 —1.890 x 10'®  2.32 x 10%° 2.52 x 10'° 2.42 x 10'° 2.42 x 10'°
17 —7.22 x 10  —8.62 x 10%7 —8.12 x 107 —8.46 x 107 | —8.46 x 10V
18 —2.78 x 102 3.33 x 10% 3.48 x 10'° 3.36 x 10'° 3.36 x 10'°
19 —1.18 x 10 —1.36 x 10% —1.32 x 1028 —1.36 x 10** | —1.36 x 10*
20 —5.01 x 10> 5.90 x 10% 6.07 x 10% 5.92 x 10% 5.92 x 10%
21 —2.34x10%°  —2.68 x 10* —2.62 x 10**  —2.68 x 10** | —2.68 x 10%*
22 —1.09 x 10®  1.28 x 10% 1.31 x 10% 1.28 x 10% 1.28 x 10%
23 —5.54 x 10¥  —6.41 x 10 —6.32 x 104 —6.41 x 10*” | —6.41 x 10%
24 —2.80 x 10®*  3.35 x 10% 3.39 x 10%° 3.35 x 10%° 3.35 x 10%°
25 —1.54 x 10  —1.83 x 10% —1.81 x 10 —1.83 x 10% | —1.83 x 10%
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Higher-order coefficients from Bp(u)

e Standard truncated expansion with 4 given coefficients:
Bp(u) =14 0.7288 u + 0.6292 u* + 0.7181
e The above algorithm leads to the optimal expansion

Bo(y) — L= 07973 w +0.4005 w? + 8.6647 w>
D(U) - (1 + W)271(1 _ W)2/72

e Reexpanded in powers of u, it gives

Bp(u) = 1+ 0.7288u+ 0.6292 4 + 0.7181
+ 0.4157 u* +0.4220 u° +0.1429 u° + ...

e The first four coefficients reproduce the input values

e The remaining coefficients lead to:

C5>1 = 25573 Co.1 — 29202/ Cr1 = 133571 .
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Alternative observable: 7 hadronic width

e Hadronic decay of the 7 lepton:

T — hadrons

__ F(r7 — hadrons v,)

R:
M7= — evev;)

= Cew (1469

5O hadronic contribution
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Alternative observable: 7 hadronic width

e Hadronic decay of the 7 lepton:

T —  hadrons

__ F(r7 — hadrons v,)

R:
M7= — evev;)

= Cew (1469

5O hadronic contribution

e Unitarity and analyticity for the hadronic polarization function =

0= § 2(1-2) (1+2)D6).  m =178Cev

i
|s|=m2

Im s

Re s
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7 hadronic width in perturbative QCD:

e Inserting in the integral the perturbative expansion of 5(5) leads to

89 =" di(as(m?))"

n>1

di =1, dp = 5.20, d3 = 26.37, ds = 127.08, ds = 307.8 + c5.1,
ds = —5848.2 + 17.81cs 1 + .1, d7 = —97769.1 4 61.33 c51 4 21.38 c5.1 + c7.1
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7 hadronic width in perturbative QCD:

e Inserting in the integral the perturbative expansion of 5(5) leads to

89 =" di(as(m?))"

n>1

di =1, dp = 5.20, d3 = 26.37, ds = 127.08, ds = 307.8 + c5.1,
ds = —5848.2 + 17.81cs 1 + .1, d7 = —97769.1 4 61.33 c51 4 21.38 c5.1 + c7.1

e Borel transform of §(:

Z n+1 u"
Bont “

n>0
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Properties of Bs(u)

In the one-loop approximation for the coupling the following relation is valid:

12 sin(mu)
B = B
RO el 7y SO
| Bs(u) ~ (1+ u)(2 — u) Bo(u)
= The nature of the singularities at v = 2 and u = —1 is modified
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Properties of Bs(u)

In the one-loop approximation for the coupling the following relation is valid:

12 sin(mu)
B = B
RO el 7y SO
| Bs(u) ~ (1+ u)(2 — u) Bo(u)
= The nature of the singularities at v = 2 and u = —1 is modified

But:

e Beyond the one-loop approximation the simple zeros become
branch-points

e The behaviour of Bs(u) near the first singularities is not exactly known

= Bs(u) is not suitable for a precise extraction of higher-order coefficients
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Other contour integrals

Consider a general weighted contour integral:

L=y § Zuls)D0s)

S

—m2
[s|=m2

In the one-loop approximation of the coupling:

B, (u) = Fu(u) Bo(u)
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Other contour integrals

Consider a general weighted contour integral:

L=5r § Te(s)DG),

s
|s|l=m2
In the one-loop approximation of the coupling:
By, (v) = Fu(u) Bo(u)

Requirements on the weight w(s):

e w(s) should vanish at the timelike point s = m2, in order to suppress the
region where the perturbative logarithms In(—s/m?2) are large

o F,(u) should not vanish at u =2 and v = —1

e F,(u) should not have poles or zeros at low values of |u]

= By, (u) has the same dominant singularities as Bp(u)
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Borel transforms

] wi(s) I Fo,; (u)
in(ru)
1 (1 - ﬁ) (11u) Sn7ru
? in(re )
s 2 sin(mu
2 <1 - E) =oe=0) =u
3 <1 - é) (2 + i) (1—u)6(3—u) sm-fr:u)
3
N _ 6 sin(u)
4 (1 ,,,2) T—0@-—0G—0 wu
3 .
5 (1 - i) (1 + ﬁ) e e e snlrs)
3 .
6 <1 - i) (3 + i) e
B m2 1 sin(mu)
7 (1 g) TT T ({+u)  wu
7 2 sin(ru)
- sin(mu;
3 (1 - ﬁ) - e ee=n R
2
s mr 6 sin(wu)
9 <1 mg) e T o@—n@ty nu
10 1 s ’ 1 s ’"27 12 sin(7ru)
= Tz ) | TEae-aary e

Higher-order perturbative coefficients in QCD from series acceleration by conf



Higher-order coefficients from a suitable contour integral

Consider the contour integral:

1 ds (s *m? o
I =— 2 _1) =&=D
2ri ?{ 3s (mg > s DGs)

Perturbative expansion:

1= "h(as(m2)” = Bu)=> it

n l
n>1 n>0 6

1, L =276, 3 =8.06, I4 = —17.854+ c4,1, Is = —379.33 +4.5¢4,1 + cs5,1,
= —2190.8 —31.99¢c4,1 +5.63¢c51 + 6,1, l7 = —895.7 — 406.2 41 —49.98¢c5,1 +6.75¢6,1 + ¢7,1

e Optimal representation:

Bi(y) — L= 0536w 1168 w? —1.181w?
I(U) - (1 i W)2'Yl(1 _ W)272 )

e Reexpanded in powers of u leads to the higher-order coefficients:

51 = 327.0, Cp,1 — 2840.6, Ccr1 = 26475
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Final results

o Average of the predictions obtained from the expansions of Bp(u) and
Bi(u) in powers of w and v

o With only three input coefficients cp 1:

‘ cs,1 =34.4+£19.6| consistent with the true value c;,; = 49.076

e With four input coefficients ¢,,1:

‘ Cs1 =287 +40, o1 =29484208, 1 = (1.89+0.75) x 10*

e Conservative definition of the error such as to cover the range of individual
values (not a statistical error)
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Final results

o Average of the predictions obtained from the expansions of Bp(u) and
Bi(u) in powers of w and v

With only three input coefficients cp 1:

‘ cs,1 =34.4+£19.6| consistent with the true value c;,; = 49.076

e With four input coefficients ¢,,1:

‘ Cs1 =287 +40, o1 =29484208, 1 = (1.89+0.75) x 10*

e Conservative definition of the error such as to cover the range of individual
values (not a statistical error)

e Comparison with predictions based on other methods:

o Fastest Apparent Convergence (FAC) or Principle of Minimum Sensitivity
(PMS) C5.1 ~ 275

e Qualitative trend in the expansion of the 7 hadronic width: c¢5 1 = 283 £ 142

e Rational approximants of the 7 hadronic width in the coupling and the Borel
planes: ¢5.1 =277 51, 1 = 3460 £ 690, c7,1 = (2.02 £0.72) x 104
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Summary and conclusions

o Impressive progress in perturbative QCD: calculations available to five-loop
order for several observables

e However,

e higher-order calculations not expected in the near future

e estimates of higher-order coefficients of interest for precision tests of the
Standard Model at intermediate energies

e complications due to hyperasymptotics (especially quark-hadron duality
violation) still under debate

e The series acceleration by conformal mappings of the Borel plane is a
possible alternative to transseries in perturbative QCD

e The method allows reasonable predictions of the perturbative coefficients
of the QCD Adler function up to eight-loop order
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