Dr. AURELIAN ISAR
LIST OF CITATIONS

     1.   [2] in E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 27, 587-589 (1978)
           Doubly logarithmic asymptotic behaviour of the fermion inelastic form-factor in non-abelian gauge theory
     2.   [2] in Yu.I. Dokschitzer, S.I. Troyan, D.I. Dyakonov, Physics Reports 58, 269-395 (1980)
           Hard processes in quantum chromodynamics
     3.   [2] in B.I. Ermolaev, L.N. Lipatov, V.S. Fadin, Sov. J. Nucl. Phys. 45, 508-511 (1987)
           On bremsstrahlung factorization in QCD
     4.   [9] in N. Nica, A. Sandulescu, Rev. Roum. Phys. 35, 535-545 (1990)
           Fourth order moments of an open harmonic oscillator (Weyl-Wigner-Moyal and Heisenberg representations)
     5.   [9] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
     6. [10] in N. Nica, A. Sandulescu, Rev. Roum. Phys. 35, 535-545 (1990)
         Fourth order moments of an open harmonic oscillator (Weyl-Wigner-Moyal and Heisenberg representations)
     7. [11] in E. Stefanescu, A. Sandulescu, W. Greiner, Int. J. Mod. Phys. E 2, 233-258 (1993)
         Quantum tunneling in open systems
     8. [11] in N.V. Antonenko, S.P. Ivanova, R.V. Jolos, W. Scheid, J. Phys. G: Nucl. Part. Phys. 20, 1447-1459 (1994)
         Application of the Lindblad axiomatic approach to nonequilibrium nuclear processes
     9. [11] in G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 645, 376-398 (1999)
         Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes
   10. [11] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
         Diffusion and friction coefficients in the Lindblad axiomatic approach to nonequilibrium nuclear processes
   11. [11] in S. Misicu, A. Sandulescu, G.M. Ter-Akopian, W. Greiner, Phys. Rev. C 60, 034613 (6p) (1999)
         Angular momenta of even-even fragments in the neutronless fission of 252Cf
   12. [11] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
   13. [13] in S. Lazanu, A. Sandulescu, Rev. Roum. Phys. 35, 421-426 (1990)
         Fourth order moments of an open harmonic oscillator by the characteristic function method
   14. [13] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
   15. [13] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
   16. [13] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
         Description of resonance decay by Lindblad operators
   17. [14] in S. Baskoutas, A. Jannussis, E. Vlachos, R. Mignani, preprint, Rome University, Rome-895-1992 (92-11-33), July 1992, 5p
         Generalized parametric oscillator in phase space
   18. [14] in M.R. Gallis, Phys. Rev. A 53, 655-660 1996)
         Emergence of classicality via decoherence described by Lindblad operators
   19. [14] in A. Dimakis, C. Tzanakis, J. Phys. A: Math. Gen. 29, 577-594 (1996)
         Noncommutative geometry and kinetic theory of open systems
   20. [14] in S. Gao, Phys. Rev. Lett. 79, 3101-3104 (1997)
         Dissipative quantum dynamics with a Lindblad functional
   21. [14] in C. Tzanakis, A.P. Grecos, Physica A 256, 87-111 (1998)
         Generalized Moyal structures in phase space, master equations and their classical limit I. General formalism
   22. [14] in C. Tzanakis, A.P. Grecos, P. Hatjimanolaki, Physica A 256, 112-128 (1998)
         Generalized Moyal structures in phase space, master equations and their classical limit II. Applications to harmonic oscillator models
   23. [14] in S. Gao, Phys. Rev. B 57, 4509-4517 (1998)
         Lindblad approach to quantum dynamics of open systems
   24. [14] in Gh.S. Paraoanu, Europhys. Lett. 47, 279-284 (1999)
         Selection of squeezed states via decoherence
   25. [14] in S. Gao, Phys. Rev. B 60, 15609-15612 (1999)
         Dissipative quantum dynamics at surfaces: A nonlinear-coupling model
   26. [14] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
   27. [14] in G. Auletta, Foundations and interpretation of quantum mechanics. In the light of a critical-historical analysis of the problems and of the synthesis of the results, 2nd edition, World Scientific, Singapore (2001)
   28. [14] in 27. M. Genkin, Diploma paper, Giessen University (2006)
         Application of the Lindblad theory for open quantum systems to a two-dimensional parabolic potential
   29. [14] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
   30. [14] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
         A two-dimensional inverse parabolic potential within the Lindblad theory for application in nuclear reactions
   31. [19] in J.O. Akeyo, preprint, Maseno University College, Kenya, May 1998, 18p
         On the Hamiltonian formalism for classical and quantum theories of damped linear harmonic oscillators
   32. [20] in N.V. Antonenko, S.P. Ivanova, R.V. Jolos, W. Scheid, J. Phys. G: Nucl. Part. Phys. 20 , 1447-1459 (1994)
         Application of the Lindblad axiomatic approach to nonequilibrium nuclear processes
   33. [20] in M.A. Vandyck, J. Phys. A: Math. Gen. 27, 1743-1750 (1994)
         On the damped harmonic oscillator in the de Broglie-Bohm hidden variable theory
   34. [20] in E.D. Mshelia, Nuovo Cimento A 108, 709-721 (1995)
         Method of normal coordinates in the formulation of a system with dissipation: the harmonic oscillator
   35. [20] in M.R. Gallis, Phys. Rev. A 53, 655-660 1996)
         Emergence of classicality via decoherence described by Lindblad operators
   36. [20] in S. Gnutzmann, F. Haake, Z. Phys. B 101, 263-273 (1996)
         Positivity violation and initial slips in open systems
   37. [20] in A.K. Rajagopal, Phys. Lett. A 228 66-72 (1997)
         Action principle for nonequilibrium statistical dynamics based on the Lindblad density matrix evolution
   38. [20] in S. Gao, Phys. Rev. Lett. 79, 3101-3104 (1997)
         Dissipative quantum dynamics with a Lindblad functional
   39. [20] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Lett. A 244, 482-488 (1998)
         Tunneling with dissipation in open quantum systems
   40. [20] in A.K. Rajagopal, Physica A 253, 271-289 (1998)
         Equations of motion in nonequilibrium statistical mechanics for nonextensive systems
   41. [20] in A.K. Rajagopal, Phys. Lett. A 246, 237-241 (1998)
         The principle of detailed balance and the Lindblad dissipative quantum dynamics
   42. [20] in F.A. Buot, A.K. Rajagopal, Superlattices and Microstructures 23, 641-660 (1998)
         Landauer counting argument, quantum distribution function transport equations and nonequilibrium quantum statistical physics
   43. [20] in S. Gao, Phys. Rev. B 57, 4509-4517 (1998)
         Lindblad approach to quantum dynamics of open systems
   44. [20] in G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 645, 376-398 (1999)
         Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes
   45. [20] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
         Diffusion and friction coefficients in the Lindblad axiomatic approach to nonequilibrium nuclear processes
   46. [20] in J.O. Akeyo, preprint, Maseno University College, Kenya, May 1998, 18p
         On the Hamiltonian formalism for classical and quantum theories of damped linear harmonic oscillators
   47. [20] in Gh.S. Paraoanu, Europhys. Lett. 47, 279-284 (1999)
         Selection of squeezed states via decoherence
   48. [20] in S. Gao, Phys. Rev. B 60, 15609-15612 (1999)
         Dissipative quantum dynamics at surfaces: A nonlinear-coupling model
   49. [20] in P. Marian, T.A. Marian, J. Phys. A: Math. Gen. 33, 3595-3603 (2000)
         Evolution of mixing during the damping of a number state
   50. [20] in Yu.V. Palchikov, G.G. Adamian, N.V. Antonenko, W. Scheid, J. Phys. A 33, 4265-4276 (2000)
         Effect of transport coefficients on the time dependence of a density matrix
   51. [20] in P. Marian, T.A. Marian, Eur. Phys. J. D 11, 257-265 (2000)
         Environment-induced nonclassical behaviour
   52. [20] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
   53. [20] in A.K. Chattah, M.O. Caceres, Cond. Matter Physics 3, 51-73 (2000)
         Quantum dissipation and phenomenological approaches
   54. [20] in G. Auletta, Foundations and interpretation of quantum mechanics. In the light of a critical-historical analysis of the problems and of the synthesis of the results, 2nd edition, World Scientific, Singapore (2001)
   55. [20] in B. Vacchini, J. Math. Phys. 42, 4291-4312 (2001)
         Translational-covariant Markovian master equation for a test particle in a quantum fluid
   56. [20] in B. Vacchini, Phys. Rev. E 63, 066115 (8p) (2001)
         Test particle in a quantum gas
   57. [20] in B. Vacchini, J. Math. Phys. 43, 5446-5458 (2002)
         Quantum optical versus quantum Brownian motion master equation in terms of covariance and equilibrium properties
   58. [20] in I. Sturzu, Ph.D. Thesis, Bucharest University (2002)
         Studies on evolution of classical and quantum systems
   59. [20] in D. Salgado, J.L. Sanchez-Gomez, J. Mod. Optics 50, 975-980 (2003)
         Damped quantum interference using stochastic calculus
   60. [20] in V.I. Man'ko, V.A. Sharapov, E.V. Shchukin, J. Rus. Laser Res. 24, 180-193 (2003)
         Probability representation of kinetic equations for open quantum systems
   61. [20] in D. Salgado, J.L. Sanchez-Gomez, Phys. Lett. A 323, 365-373 (2004)
         A formula for the Bloch vector of some Lindblad quantum systems
   62. [20] in A.K. Chattah, M.O. Caceres, Instabilities and Nonequilibrium Structures, pp. 183-196, Proceedings of the International Workshop, Vila del Mar, Chile, Kluwer Acad. Publishers, Dordrecht, Boston, London (2004), 423p (Eds. O. Descalzi, J. Martinez, E. Tirapegui)
         Computing the quantum Boltzmann equation from a Kossakowski-Lindblad generator
   63. [20] in E. Stefanescu, Physica A 350, 227-244 (2005)
         Dynamics of a Fermi system with resonant dissipation and dynamical detailed balance
   64. [20] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
   65. [20] in M. Ferrero, D. Salgado, J.L. Sanchez-Gomez, in Navegante sin Fronteras: Homenaje a Luis de la Pena, pp. 49-64, UNAM, Mexic (2006), 275 p
         Stochastic evolution in Hilbert spaces and open quantum systems
   66. [20] in E. Stefanescu, A. Sandulescu, Rom. J. Phys. 52, 193-215 (2007)
         Dissipative dynamics of a system of fermions
   67. [20] in C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
         Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
   68. [20] in F.M. Ramazanoglu, quant-ph/0812.2520 (2008) 26p
         Approach to thermal equilibrium in the Caldeira-Leggett model
   69. [21] in E. Stefanescu, W. Scheid, A. Sandulescu, W. Greiner, Phys. Rev. C 53, 3014-3021 (1996)
         Cold fission as cluster decay with dissipation
   70. [21] in E. Stefanescu, P. Sterian, Opt. Engineering 35, 1573-1575 (1996)
         Exact quantum master equations for Markoffian systems
   71. [21] in E. Stefanescu, P. Sterian, Proceedings SPIE of Conference on Optics "ROMOPTO'97", Bucharest, Romania (1997), 3405, 877-882 (1998), SPIE Bellingham (USA), (Eds. V.I. Vlad, D.C. Dumitras)
         Non-Markovian effects in dissipative systems
   72. [21] in G.G. Adamian, N.V. Antonenko, W. Scheid, Proceedings of the 5th International Wigner Symposium, Vienna, Austria (1997), pp. 355-358, World Scientific, Singapore (1998) (Eds. P. Kasperkovitz, D. Grau)
         Diffusion and friction coefficients in equation for Wigner distribution function
   73. [21] in E. Stefanescu, R.J. Liotta and A. Sandulescu, Phys. Rev. C 57, 798-805 (1998)
         Giant resonances as collective states with dissipative coupling
   74. [21] in G. Lindblad, J. Math. Phys. 39, 2763-2780 (1998)
         Brownian motion of quantum harmonic oscillators: Existence of a subdynamics
   75. [21] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Lett. A 244, 482-488 (1998)
         Tunneling with dissipation in open quantum systems
   76. [21] in G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 645, 376-398 (1999)
         Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes
   77. [21] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
         Diffusion and friction coefficients in the Lindblad axiomatic approach to nonequilibrium nuclear processes
   78. [21] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Lett. A 260, 39-45 (1999)
         Diffusion coefficients in coordinate in density matrix description of nonequilibrium quantum processes
   79. [21] in E. Stefanescu, A. Sandulescu, Rom. J. Optoelectronics 7, 59-65 (1999)
         Dissipative processes through Lindblad's master equation
   80. [21] in E. Stefanescu, A. Sandulescu and W. Scheid, Int. J. Mod. Phys. E 9, 17-50 (2000)
         The collisional decay of a Fermi system interacting with a many-mode electromagnetic field
   81. [21] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
   82. [21] in S. Misicu, J. Phys. G: Nucl. Part. Phys. 26, 1447-1459 (2000)
         Quantum dissipation in cluster decay phenomena: I. Smoothly joined quadratic potentials
   83. [21] in Yu.V. Palchikov, G.G. Adamian, N.V. Antonenko, W. Scheid, J. Phys. A 33, 4265-4276 (2000)
         Effect of transport coefficients on the time dependence of a density matrix
   84. [21] in V.V. Dodonov, S.S. Mizrahi, A.L. Souza Silva, J. Opt. B: Quantum Semiclass. Opt. 2, 271-281 (2000)
         Decoherence and thermalization dynamics of a quantum oscillator
   85. [21] in M.C. de Oliveira, N.G. Almeida, S.S. Mizrahi, M.H.Y. Moussa, Phys. Rev. A 62, 012108 (11p) 2000)
         Quantum to classical transition from the cosmic background radiation
   86. [21] in E. Stefanescu, A. Sandulescu, Int. J. Mod. Phys. E 11, 119-130 (2002)
         Microscopic coefficients for the quantum master equation of a Fermi system
   87. [21] in B. Vacchini, J. Math. Phys. 43, 5446-5458 (2002)
         Quantum optical versus quantum Brownian motion master equation in terms of covariance and equilibrium properties
   88. [21] in Yu.V. Palchikov, G.G. Adamian, N.V. Antonenko, W. Scheid, Physica A 316, 297-313 (2002)
         Generalization of Kramers formula for open quantum systems
   89. [21] in I. Sturzu, quant-ph/0204014 (2002) (Rom. J. Phys)
         Topics on the stochastic treatment of the evolution of an open quantum system
   90. [21] in L.M. Ping, Z.Y. Zhang, J. Wuhan Univ. (Natural Science Ed.) , 581-584 (2002)
         Effective Hamiltonian of open quantum system and several new solvable models
   91. [21] in I. Sturzu, quant-ph/0204110 (2002)
         State transformations after quantum fuzzy measurements
   92. [21] in M.R. Gallis, quant-ph/0210054 (2002)
         Open environments for quantum open systems
   93. [21] in I. Sturzu, Ph.D. Thesis, Bucharest University (2002) (in Romanian)
         Studies on evolution of classical and quantum systems
   94. [21] in V.V. Dodonov, V.I. Man'ko, Theory of non-classical states of light, Taylor & Francis (2003)
   95. [21] in E.P. Zhidkov, Yu. Yu. Lobanov, V. D. Rushai, preprint P11-2003-114, JINR Dubna, 2003, 15p
         Numerical study of open quantum systems by the method of approximate functional integration with respect to conditional Wiener measure
   96. [21] O. Brodier, A.M.O. de Almeida, Phys. Rev. E 69, 016204 (11p) (2004)
         Symplectic evolution of Wigner functions in Markovian open systems
   97. [21] in Z. Kanokov, Yu.V. Palchikov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. E 71, 016121 (20p) (2005)
         Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients
   98. [21] in Yu.V. Palchikov, Z. Kanokov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. E 71, 016122 (10p) (2005)
         Non-Markovian dynamics of quantum systems. II. Decay rate, capture and pure state
   99. [21] in B. Vacchini, Int. J. Theor. Phys. 44, 1011-1021 (2005)
         Master equations for the study of decoherence
 100. [21] in E. Stefanescu, Physica A 350, 227-244 (2005)
         Dynamics of a Fermi system with resonant dissipation and dynamical detailed balance
 101. [21] in Sabrina Maniscalco, Phys. Rev. A 72 , 024103 (4p) (2005)
         Limits in the characteristic-function description of non-Lindblad-type open quantum systems
 102. [21] in G.G. Adamian, N.V. Antonenko, Z. Kanokov, V.V. Sargsyan, W. Scheid, Theor. Math. Phys. 145, 1443-1456 (2005)
         Quantum non-Markovian stochastic equations
 103. [21] in V.V. Dodonov, J. Opt. B: Quantum Semiclass. Opt. 7, S445-S451 (2005)
         Time-dependent quantum damped oscillator with "minimal noise": application to the nonstationary Casimir effect in nonideal cavities
 104. [21] in V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, Phys. Atomic Nuclei 68, 2009-2021 (2005)
         Quantum non-Markovian Langevin equations and transport coefficients
 105. [21] in E. Stefanescu, A.R. Sterian, P. Sterian, Proc. SPIE of the Conference "Advanced Laser Technologies 2004", Rome, Italy (2004), 5850, 160-165, SPIE Bellingham, USA (2005) (Eds. I.A. Shcherbakov, A. Giardini, V.I. Konov, V.I. Pustovoy)
         Study of the fermion systems coupled by electric dipole interaction with the free electromagnetic field
 106. [21] M. Genkin, Diploma paper, Giessen University (2006)
         Application of the Lindblad theory for open quantum systems to a two-dimensional parabolic potential
 107. [21] in V.V. Dodonov, A.V. Dodonov, J. Russian Laser Res. 27, 379-388 (2006)
         The Heisenberg-Langevin model of a quantum damped harmonic oscillator with time-dependent frequency and damping coefficients
 108. [21] in A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E 75, 011132 (10p) (2007)
         Quantum master equations from classical Lagrangians with two stochastic forces
 109. [21] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
         A two-dimensional inverse parabolic potential within the Lindblad theory for application in nuclear reactions
 110. [21] in V.V. Sargsyan, Yu.V. Palchikov, Z. Kanokov, G.G. Adamian, N.V. Antonenko, Phys. Rev. A 75, 062115 (7p) (2007)
         Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems
 111. [21] G. Manfredi, P.A. Hervieux, Applied Phys. Lett. 91, 061108 (3p) (2007)
         Autoresonant control of the many-electron dynamics in nonparabolic quantum wells
 112. [21] E. Stefanescu, A. Sandulescu, Rom. J. Phys. 52, 193-215 (2007)
         Dissipative dynamics of a system of fermions
 113. [21] C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
         Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
 114. [21] in U. Weiss, Quantum dissipative systems, 3rd edition, World Scientific, Singapore (2008)
 115. [21] in R.S. Whitney, J. Phys. A: Math. Theor. 41, 175304 (18p) (2008)
         Staying positive: going beyond Lindblad with perturbative master equations
 116. [21] in A. Arnold, F. Fagnola, L. Neumann, math-ph/0806.2984 (2008)
         Quantum Fokker-Planck models: the Lindblad and Wigner approaches
 117. [21] in O. Brodier, A.M. Ozorio de Almeida, quant-ph/0808.2258 (2008)
         Markovian evolution of localized quantum states in the semiclassical limit
 118. [21] in A.C. Oliveira, A.R.B. de Magalhaes, quant-ph/0809.1446 (2008) 6p
         Decoherence and irreversibility: the role of the reservoir effective Hilbert space size
 119. [21] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
         Description of resonance decay by Lindblad operators
 120. [24] in E.A. Akhundova, M.A. Mukhtarov, J. Phys. A: Math. Gen. 28, 5287-5289 (1995)
         Smoothed Wigner function of a quantum damped oscillator
 121. [24] in M.R. Gallis, Phys. Rev. A 53, 655-660 (1996)
         Emergence of classicality via decoherence described by Lindblad operators
 122. [24] in G.A. Worth, H.D. Meyer, L.S. Cederbaum, J. Chem. Phys. 105, 4412-4426 (1996)
         The effect of a model environment on the S2 absorption spectrum of pyrazine: A wave packet study treating all 24 vibrational modes
 123. [24] in Gh.S. Paraoanu, H. Scutaru, Phys. Lett. A 238, 219-222 (1998)
         Classical states via decoherence
 124. [24] in R.C. de Berredo, J.G.P. de Faria, F. Camargo, M.C. Nemes, H.E. Borges, K.H.F. Romero, A.F.R.D. Piza, A.N. Salgueiro, Phys. Scripta 57, 533-534 (1998)
         On the physical content of Lindblad form master equations
 125. [24] in J.O. Akeyo, preprint, Maseno University College, Kenya, May 1998, 18p
         On the Hamiltonian formalism for classical and quantum theories of damped linear harmonic oscillators
 126. [24] in Gh.S. Paraoanu, Europhys. Lett. 47, 279-284 (1999)
         Selection of squeezed states via decoherence
 127. [24] in B. Vacchini, quant-ph/0002094 
        Completely positive quantum dissipation
 128. [24] in D. Popov, Czech. J. Phys. 52, 993-1010 (2002)
         New coherent states for the BDS-Hamiltonian
 129. [24] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
 130. [25] in H. Rosu, preprint IFUG-24-1994, Guanajuato Univ., Nov. 1994, 84p (cited as Preprint IFA-FT-396-1994, hep-th/9406142 (1994))
         Pedestrians notes in quantum fundamentals
 131. [25] in J. Rheinländer, Ph.D. Thesis, Götingen University (1999)
         Characteristics of the generators of dynamical semigroups
 132. [25] in A.V. Churkin, Mathematical Notes {\bf 78}, 867-873 (2005) (cited as hep-th/9406142)
         Stochastic Schröodinger equation for a quantum oscillator with dissipation
 133. [25] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
 134. [27] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
 135. [27] in V.E. Tarasov, Phys. Lett. A 299, 173-178 (2002)
         Stationary states of dissipative quantum systems
 136. [27] in V.E. Tarasov, Phys. Rev. E 66, 056116 (7 p) (2002)
         Pure stationary states of open quantum systems
 137. [27] in J.L. Garcia Palacios, Europhys. Lett. 65, 735-741 (2004)
         Solving quantum master equations in phase space by continued-fraction methods
 138. [27] in J.L. Garcia Palacios, D. Zueco, J. Phys. A: Math. Gen. 37, 10735-10770 (2004)
         Caldeira-Leggett quantum master equation in Wigner phase space: continued-fraction solution and application to Brownian motion in periodic potentials
 139. [27] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
 140. [27] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
         A two-dimensional inverse parabolic potential within the Lindblad theory for application in nuclear reactions
 141. [29] in E. Stefanescu, P. Sterian, Proceedings SPIE of Conference on Optics "ROMOPTO'97", Bucharest, Romania (1997), 3405, 877-882 (1998), SPIE Bellingham (USA), (Eds. V.I. Vlad, D.C. Dumitras)
         Non-Markovian effects in dissipative systems
 142. [31] in G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 645, 376-398 (1999)
         Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes
 143. [31] in V.V. Dodonov, S.S. Mizrahi, A.L. Souza Silva, J. Opt. B: Quantum Semiclass. Opt. 2, 271-281 (2000)
         Decoherence and thermalization dynamics of a quantum oscillator
 144. [31] in F. Benatti, R. Floreanini, J. Phys. A: Math. Gen. 33, 8139-8153 (2000)
         Damped harmonic oscillator in the holomorphic representation
 145. [31] in R.W. Rendell, A.K. Rajagopal, Phys. Lett. A 279, 175-180 (2001)
         Control of decoherence and correlation in single quantum dissipative oscillator systems
 146. [31] in B. Vacchini, Phys. Rev. E 63, 066115 (8p) (2001)
         Test particle in a quantum gas
 147. [31] in L. Lanz, B. Vacchini, Int. J. Mod. Phys. A 17, 435-463 (2002)
         Subdynamics of relevant observables: a field theoretical approach
 148. [31] in B. Vacchini, J. Math. Phys. 43, 5446-5458 (2002)
         Quantum optical versus quantum Brownian motion master equation in terms of covariance and equilibrium properties
 149. [31] in A. Volya, H. Esbensen, Phys. Rev. C 66, 044604 (10p) (2002)
         Role of E1-E2 interplay in multiphonon Coulomb excitation
 150. [31] in I. Sturzu, quant-ph/0204110 (5p)
         State transformations after quantum fuzzy measurements
 151. [31] in B. Vacchini, Phys. Rev. E 66, 027107 (4p) (2002)
         Non-Abelian linear Boltzmann equation and quantum correction to Kramers and Smoluchowski equation
 152. [31] in B. Vacchini, Int. J. Theor. Phys. 43, 1515-1525 (2004)
         Dissipative systems and objective description: Quantum Brownian motion as an example
 153. [31] in M.R. Gallis, quant-ph/0210054 (2002)
         Open environments for quantum open systems
 154. [31] in I. Sturzu, Ph.D. Thesis, Bucharest University (2002) (in Romanian)
         Studies on evolution of classical and quantum systems
 155. [31] in V.V. Dodonov, V.I. Manko, Theory of non-classical states of light, Taylor & Francis (2003)
 156. [31] in Yu.V. Palchikov, Z. Kanokov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. E 71, 016122 (10p) (2005)
         Non-Markovian dynamics of quantum systems. II. Decay rate, capture and pure states
 157. [31] in G.V. Ryzhakov, Russian J. Math. Phys. 12, 386-393 (2005)
         Asymptotic solutions of the quantum stochastic Liouville equation for an oscillator with regard to dissipation
 158. [31] in G.G. Adamian, N.V. Antonenko, Z. Kanokov, V.V. Sargsyan, W. Scheid, Theor. Math. Phys. 145, 1443-1456 (2005)
         Quantum non-Markovian stochastic equations
 159. [31] in A.V. Churkin, Mathematical Notes 78, 867-873 (2005) (cited as hep-th/9406142)
         Stochastic Schrödinger equation for a quantum oscillator with dissipation
 160. [31] in S. Boixo, L. Viola, G. Ortiz, quant-ph/0609068
         Generalized coherent states as preferred states of open quantum systems
 161. [31] in A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E 75, 011132 (10p) (2007)
         Quantum master equations from classical Lagrangians with two stochastic forces
 162. [31] in Y. Liu, Y. Zheng, W. Ren, S. Ding, Phys. Rev. A 78, 032523 (9p) (2008)
         Dynamical entanglement of vibrations in small molecules through an analytically algebraic approach
 163. [32] in G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
         Diffusion and friction coefficients in the Lindblad axiomatic approach to nonequilibrium nuclear processes
 164. [32] in V.V. Dodonov, S.S. Mizrahi, A.L. Souza Silva, J. Opt. B: Quantum Semiclass. Opt. 2, 271-281 (2000)
         Decoherence and thermalization dynamics of a quantum oscillator
 165. [32] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
 166. [32] in R.W. Rendell, A.K. Rajagopal, Phys. Lett. A 279, 175-180 (2001)
         Control of decoherence and correlation in single quantum dissipative oscillator systems
 167. [32] in A.K. Rajagopal and R.W. Rendell, Phys. Rev. A 63, 022116 (11p) (2001)
         Decoherence, correlation and entanglement in a pair of coupled quantum dissipative oscillators
 168. [32] in A.L. Souza Silva, W. Duarte Jose, V.V. Dodonov, S.S. Mizrahi, Phys. Lett. A 282, 235-244 (2001)
         Production of two-Fock states superpositions from even circular states and their decoherence
 169. [32] in M.R. Gallis, quant-ph/0210054 (2002)
         Open environments for quantum open systems
 170. [32] in W.S. Zhu, H. Rabitz, J. Chem. Phys. 118, 6751-6757 (2003)
         Closed loop learning control to suppress the effects of quantum decoherence
 171. [32] in J. Gong, P. Brumer, Phys. Rev. A 68, 022101 (8p) (2003)
         Intrinsic decoherence dynamics in smooth hamiltonian systems: Quantum-classical correspondence
 172. [32] in J. Gong, P. Brumer, J. Mod. Opt. 50, 2411-2422 (2003)
         Quantum versus classical decoherence dynamics
 173. [32] in J. Gong, P. Brumer, Phys. Rev. A 68, 062103 (12p) (2003)
         Chaos and quantum-classical correspondence via phase space distribution functions
 174. [32] in V.V. Dodonov, V.I. Manko, Theory of non-classical states of light, Taylor& Francis (2003)
 175. [32] in S.L. Adler, J. Phys. A: Math. Gen. 38, 2729-2745 (2005)
         Stochastic collapse and decoherence of a non-dissipative forced harmonic oscillator
 176. [32] in A.V. Novikov, Ph. D. Thesis, Technical University Chemnitz (2005)
         Path integral formulation of dissipative quantum dynamics
 177. [32] in V.V. Dodonov, L.A. de Souza, J. Optics B: Quantum Semiclass. Optics 7, S490-S499 (2005)
         Decoherence of superpositions of displaced number states
 178. [32] in M. Ban, J. Phys. A: Math. Gen. 39, 1927-1943 (2006)
         Decoherence of continuous variables quantum information in non-Markovian channels
 179. [32] in H. Kohler, F. Sols, New J. Phys. 8, 149 (26p) (2006)
         Dissipative quantum oscillator with two competing heat baths
 180. [32] in M.H. Naderi, M. Soltanolkotabi, Eur. Phys. J. D 39, 471-479 (2006)
         Influence of nonlinear quantum dissipation on the dynamical properties of the f-deformed Jaynes-Cummings model in the dispersive limit
 181. [32] in V.V. Dodonov, A.V. Dodonov, J. Russian Laser Res. 27, 379-388 (2006)
         The Heisenberg-Langevin model of a quantum damped harmonic oscillator with time-dependent frequency and damping coefficients
 182. [37] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
         How to solve the Lindblad equation: solution in the Kraus representation
 183. [32] in A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E 75, 011132 (10p) (2007)
         Quantum master equations from classical Lagrangians with two stochastic forces
 184. [32] in V.V. Dodonov, Phys. Lett. A 364, 368-371 (2007)
         Wigner functions and statistical moments of quantum states with definite parity
 185. [32] in V.V. Dodonov, L.A. de Souza, J. Phys. A: Math. Theor. 40, 13955-13974 (2007)
         Decoherence of multicomponent symmetrical superpositions of displaced quantum states
 186. [32] in V.V. Dodonov, L.A. de Souza, J. Russ. Laser Res. 28, 453-482 (2007)
         Decoherence of multicomponent and multimode generalizations of even/odd coherent states in thermal and phase transitions
 187. [32] in M.H. Naderi, Canad. J. Phys. 85, 1071-1096 (2007)
         Intrinsic decoherence effects on quantum dynamics of the non-degenerate two-photon f-deformed Jaynes-Cummings model governed by the Milburn equation
 188. [32] C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
         Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
 189. [32] in E. Karimzadeh Esfahani, R. Roknizadeh, M.H. Naderi, quant-ph/0710.3839 (2007)
         Dissipative dynamics of the semiconductor-cavity QED with q-deformed bosons in the dispersive approximation
 190. [32] in E. Pollak, J.S. Shao, D.H. Zhang, Phys. Rev. E 77, 021107 (2008)
         Effects of initial correlations on the dynamics of dissipative systems
 191. [32] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
         Description of resonance decay by Lindblad operators
 192. [33] in S. Misicu, J. Phys. G: Nucl. Part. Phys. 26, 1447-1459 (2000)
         Quantum dissipation in cluster decay phenomena: I. Smoothly joined quadratic potentials
 193. [33] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane, Bucuresti (2000)
 194. [33] in V.V. Dodonov, V.I. Man'ko, Theory of non-classical states of light, Taylor& Francis (2003)
 195. [33] in M. Genkin, Diploma paper, Giessen University (2006)
         Application of the Lindblad theory for open quantum systems to a two-dimensional parabolic potential
 196. [33] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
         A two-dimensional inverse parabolic potential within the Lindblad theory for application in nuclear reactions
 197. [33] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
         Description of resonance decay by Lindblad operators
 198. [39] in D. Galetti, S.S. Mizrahi, M. Ruzzi, quant-ph/0404074 (2004) (2007)
         The wigner function associated to the Rogers-Szegö polynomials
 199. [39] in S.S. Mizrahi, J.P. Camargo Lima, V.V. Dodonov, J. Phys. A: Math. Gen. 37, 3707-3724 (2004)
         Energy spectrum, potential and inertia functions of a generalized f-oscillator
 200. [39] in J.P. Camargo Lima, Ph. D. Thesis, Sao Carlos University, Brazil (2006)
         Relaxation processes in quantum systems and algebras of nonlinear operators
 201. [40] C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
         Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
 202. [41] in D. Galetti, S.S. Mizrahi, M. Ruzzi, quant-ph/0404074 (2004) (2007)
         The wigner function associated to the Rogers-Szegö polynomials
 203. [41] in S.S. Mizrahi, J.P. Camargo Lima, V.V. Dodonov, J. Phys. A: Math. Gen. 37, 3707-3724 (2004)
         Energy spectrum, potential and inertia functions of a generalized f-oscillator
 204. [41] in J.P. Camargo Lima, Ph. D. Thesis, Sao Carlos University, Brazil (2006)
         Relaxation processes in quantum systems and algebras of nonlinear operators
 205. [41] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
         A two-dimensional inverse parabolic potential within the Lindblad theory for application in nuclear reactions
 206. [41] in J. Cuevas, P.A.S. Silva, F.R. Romero, L. Cruzeiro, Phys. Rev. E 76, 011907 (8p) (2007)
         Dynamics of the Davydov-Scott monomer in a thermal bath: Comparison of the full quantum and semiclassical approaches
 207. [44] in M.H. Naderi, M. Soltanolkotabi, Eur. Phys. J. D 39, 471-479 (2006)
         Influence of nonlinear quantum dissipation on the dynamical properties of the f-deformed Jaynes-Cummings model in the dispersive limit
 208. [44] in J.P. Camargo Lima, Ph. D. Thesis, Sao Carlos University, Brazil (2006)
         Relaxation processes in quantum systems and algebras of nonlinear operators
 209. [44] in H.H. Zhang, X.G. Zhou, High Energy Phys. Nucl. Phys. (Chin. Ed.) 31, 337-340 (2007)
         Antibunching properties of q-deformed coherent light field interacting with a cascade three-level atom
 210. [44] in H.H. Zhang, A. Rauf, X.G. Zhou, Proc. of Prog. Electromag. Res. Symp., 904-907 (2007), PIERS Beijing, 2007, Publ.: Electromagnetics Acad., Cambridge (USA), (Ed. J.A. Kong)
         Entanglement theory and a q-analogue entangled state
 211. [44] in S.N. Yao, X.G. Zhou, H.H. Zhang, Optical Technology 33, 676 (2007)
 212. [50] in M. Genkin, Diploma paper, Giessen University (2006)
         Application of the Lindblad theory for open quantum systems to a two-dimensional parabolic potential
 213. [50] in R.M. Angelo, Phys. Rev. A {\bf 76}, 052111 (9p) (2007)
         Correspondence principle for the diffusive dynamics of a quartic oscillator: Deterministic aspects and the role of temperature
 214. [50] in J.A. Messer, Ph. D. Thesis, Giessen University (2007)
         Realism problem of quantum mechanics using the decoherence interpretation
 215. [50] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
         Description of resonance decay by Lindblad operators

Back to my Homepage


Goto Top