Dr. AURELIAN
ISAR
LIST OF CITATIONS
1. [2] in E.A. Kuraev, V.S.
Fadin, Sov. J. Nucl. Phys. 27, 587-589 (1978)
Doubly logarithmic
asymptotic behaviour of the fermion inelastic form-factor in
non-abelian gauge theory
2. [2] in Yu.I.
Dokschitzer, S.I. Troyan, D.I. Dyakonov, Physics Reports 58,
269-395 (1980)
Hard processes in quantum
chromodynamics
3. [2] in B.I. Ermolaev,
L.N. Lipatov, V.S. Fadin, Sov. J. Nucl. Phys. 45, 508-511
(1987)
On bremsstrahlung
factorization in QCD
4. [9] in N. Nica, A.
Sandulescu, Rev. Roum. Phys. 35, 535-545 (1990)
Fourth order moments of an
open harmonic oscillator (Weyl-Wigner-Moyal and Heisenberg
representations)
5. [9] in E. Stefanescu, Sisteme
disipative, Ed. Academiei Romane, Bucuresti (2000)
6. [10] in N. Nica, A. Sandulescu, Rev.
Roum. Phys. 35, 535-545 (1990)
Fourth order moments of an open
harmonic oscillator (Weyl-Wigner-Moyal and Heisenberg representations)
7. [11] in E. Stefanescu, A. Sandulescu,
W. Greiner, Int. J. Mod. Phys. E 2, 233-258 (1993)
Quantum tunneling in open systems
8. [11] in N.V. Antonenko, S.P.
Ivanova, R.V. Jolos, W. Scheid, J. Phys. G: Nucl. Part. Phys. 20,
1447-1459 (1994)
Application of the Lindblad axiomatic
approach to nonequilibrium nuclear processes
9. [11] in G.G. Adamian, N.V.
Antonenko, W. Scheid, Nucl. Phys. A 645, 376-398 (1999)
Friction and diffusion coefficients
in coordinate in nonequilibrium nuclear processes
10. [11] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
Diffusion and friction coefficients
in the Lindblad axiomatic approach to nonequilibrium nuclear processes
11. [11] in S. Misicu, A. Sandulescu, G.M.
Ter-Akopian, W. Greiner, Phys. Rev. C 60, 034613 (6p) (1999)
Angular momenta of even-even
fragments in the neutronless fission of 252Cf
12. [11] in E. Stefanescu, Sisteme disipative,
Ed. Academiei Romane, Bucuresti (2000)
13. [13] in S. Lazanu, A. Sandulescu, Rev. Roum. Phys.
35, 421-426 (1990)
Fourth order moments of an open
harmonic oscillator by the characteristic function method
14. [13] in E. Stefanescu, Sisteme disipative,
Ed. Academiei Romane, Bucuresti (2000)
15. [13] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
16. [13] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
Description of resonance decay by Lindblad operators
17. [14] in S. Baskoutas, A. Jannussis, E. Vlachos, R.
Mignani, preprint, Rome University, Rome-895-1992 (92-11-33), July 1992, 5p
Generalized parametric oscillator in
phase space
18. [14] in M.R. Gallis, Phys. Rev. A 53, 655-660
1996)
Emergence of classicality via
decoherence described by Lindblad operators
19. [14] in A. Dimakis, C. Tzanakis, J. Phys.
A: Math. Gen. 29, 577-594 (1996)
Noncommutative geometry and kinetic
theory of open systems
20. [14] in S. Gao, Phys. Rev. Lett. 79,
3101-3104 (1997)
Dissipative quantum dynamics with a
Lindblad functional
21. [14] in C. Tzanakis, A.P. Grecos, Physica
A 256, 87-111 (1998)
Generalized Moyal structures in phase
space, master equations and their classical limit I. General formalism
22. [14] in C. Tzanakis, A.P. Grecos, P.
Hatjimanolaki, Physica A 256, 112-128 (1998)
Generalized Moyal structures in phase
space, master equations and
their classical limit II. Applications to harmonic oscillator
models
23. [14] in S. Gao, Phys. Rev. B 57,
4509-4517 (1998)
Lindblad approach to quantum dynamics
of open systems
24. [14] in Gh.S. Paraoanu, Europhys. Lett.
47, 279-284 (1999)
Selection of squeezed states via
decoherence
25. [14] in S. Gao, Phys. Rev. B 60,
15609-15612 (1999)
Dissipative quantum dynamics at
surfaces: A nonlinear-coupling model
26. [14] in E. Stefanescu, Sisteme disipative,
Ed. Academiei Romane, Bucuresti (2000)
27. [14] in G. Auletta, Foundations and interpretation of
quantum mechanics. In the light of a critical-historical analysis of
the problems and of the synthesis of the results, 2nd edition, World
Scientific, Singapore (2001)
28. [14] in 27. M. Genkin, Diploma paper, Giessen University (2006)
Application of the Lindblad theory for open quantum systems to
a two-dimensional parabolic potential
29. [14] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
30. [14] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
A two-dimensional inverse parabolic potential within the
Lindblad theory for application in nuclear reactions
31. [19] in J.O. Akeyo, preprint, Maseno
University College, Kenya, May 1998, 18p
On the Hamiltonian formalism for
classical and quantum theories of damped linear harmonic oscillators
32. [20] in N.V. Antonenko, S.P. Ivanova, R.V.
Jolos, W. Scheid, J. Phys. G: Nucl. Part. Phys. 20 ,
1447-1459 (1994)
Application of the Lindblad axiomatic
approach to nonequilibrium nuclear processes
33. [20] in M.A. Vandyck, J. Phys. A: Math.
Gen. 27, 1743-1750 (1994)
On the damped harmonic oscillator in
the de Broglie-Bohm hidden variable theory
34. [20] in E.D. Mshelia, Nuovo Cimento A 108,
709-721 (1995)
Method of normal coordinates in the
formulation of a system with dissipation: the harmonic oscillator
35. [20] in M.R. Gallis, Phys. Rev. A 53, 655-660
1996)
Emergence of classicality via
decoherence described by Lindblad operators
36. [20] in S. Gnutzmann, F. Haake, Z. Phys. B
101, 263-273 (1996)
Positivity
violation and initial slips in open systems
37. [20] in A.K. Rajagopal, Phys. Lett. A 228 66-72 (1997)
Action principle for nonequilibrium
statistical dynamics based on the Lindblad density matrix evolution
38. [20] in S. Gao, Phys. Rev. Lett. 79,
3101-3104 (1997)
Dissipative quantum dynamics with a
Lindblad functional
39. [20] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Lett. A 244, 482-488 (1998)
Tunneling with dissipation in open
quantum systems
40. [20] in A.K. Rajagopal, Physica A 253, 271-289 (1998)
Equations of motion in nonequilibrium
statistical mechanics for nonextensive systems
41. [20] in A.K. Rajagopal, Phys. Lett. A 246, 237-241 (1998)
The principle of detailed balance and
the Lindblad dissipative quantum dynamics
42. [20] in F.A. Buot, A.K. Rajagopal,
Superlattices and Microstructures 23, 641-660 (1998)
Landauer counting argument, quantum
distribution function transport equations and nonequilibrium quantum
statistical physics
43. [20] in S. Gao, Phys. Rev. B 57,
4509-4517 (1998)
Lindblad approach to quantum dynamics
of open systems
44. [20] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Nucl. Phys. A 645, 376-398 (1999)
Friction and diffusion coefficients
in coordinate in nonequilibrium nuclear processes
45. [20] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
Diffusion and friction coefficients
in the Lindblad axiomatic approach to nonequilibrium nuclear processes
46. [20] in J.O. Akeyo, preprint, Maseno
University College, Kenya, May 1998, 18p
On the Hamiltonian formalism for
classical and quantum theories of damped linear harmonic oscillators
47. [20] in Gh.S. Paraoanu, Europhys. Lett.
47, 279-284 (1999)
Selection of squeezed states via
decoherence
48. [20] in S. Gao, Phys. Rev. B 60,
15609-15612 (1999)
Dissipative quantum dynamics at
surfaces: A nonlinear-coupling model
49. [20] in P. Marian, T.A. Marian, J. Phys.
A: Math. Gen. 33, 3595-3603 (2000)
Evolution of mixing during the
damping of a number state
50. [20] in Yu.V. Palchikov, G.G. Adamian, N.V.
Antonenko, W. Scheid, J. Phys. A 33, 4265-4276 (2000)
Effect of transport coefficients on
the time dependence of a density matrix
51. [20] in P. Marian, T.A. Marian, Eur. Phys.
J. D 11, 257-265 (2000)
Environment-induced nonclassical
behaviour
52. [20] in E. Stefanescu, Sisteme disipative,
Ed. Academiei Romane, Bucuresti (2000)
53. [20] in A.K. Chattah, M.O. Caceres, Cond.
Matter Physics 3, 51-73 (2000)
Quantum dissipation and
phenomenological approaches
54. [20] in G. Auletta, Foundations and
interpretation of quantum mechanics. In the light of a
critical-historical analysis of the problems and of the synthesis of the
results, 2nd edition, World Scientific, Singapore (2001)
55. [20] in B. Vacchini, J. Math. Phys. 42,
4291-4312 (2001)
Translational-covariant Markovian
master equation for a test particle in a quantum fluid
56. [20] in B. Vacchini, Phys. Rev. E 63,
066115 (8p) (2001)
Test particle in a quantum gas
57. [20] in B. Vacchini, J. Math. Phys. 43,
5446-5458 (2002)
Quantum optical versus quantum
Brownian motion master equation in terms of covariance and equilibrium
properties
58. [20] in I. Sturzu, Ph.D.
Thesis, Bucharest University (2002)
Studies on evolution
of classical and quantum systems
59. [20] in D. Salgado, J.L. Sanchez-Gomez, J. Mod. Optics
50, 975-980 (2003)
Damped quantum interference using
stochastic calculus
60. [20] in V.I. Man'ko, V.A. Sharapov, E.V. Shchukin, J. Rus.
Laser Res. 24, 180-193 (2003)
Probability
representation of kinetic equations for open quantum systems
61. [20] in D. Salgado, J.L. Sanchez-Gomez, Phys. Lett. A
323, 365-373 (2004)
A formula for the Bloch vector of
some Lindblad quantum systems
62. [20] in A.K. Chattah, M.O. Caceres, Instabilities and
Nonequilibrium Structures, pp. 183-196, Proceedings of the International Workshop, Vila del Mar, Chile, Kluwer Acad. Publishers, Dordrecht, Boston, London (2004), 423p (Eds. O. Descalzi, J. Martinez, E. Tirapegui)
Computing the quantum Boltzmann equation from a Kossakowski-Lindblad generator
63. [20] in E. Stefanescu, Physica A 350, 227-244
(2005)
Dynamics of a Fermi
system with resonant dissipation and dynamical detailed balance
64. [20] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
65. [20] in M. Ferrero, D. Salgado, J.L. Sanchez-Gomez, in Navegante sin Fronteras: Homenaje a Luis de la Pena, pp. 49-64, UNAM, Mexic (2006), 275 p
Stochastic evolution in Hilbert spaces and open quantum systems
66. [20] in E. Stefanescu, A. Sandulescu, Rom. J. Phys. 52, 193-215 (2007)
Dissipative dynamics of a system of fermions
67. [20] in C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
68. [20] in F.M. Ramazanoglu, quant-ph/0812.2520 (2008) 26p
Approach to thermal equilibrium in the Caldeira-Leggett model
69. [21] in E. Stefanescu, W. Scheid, A.
Sandulescu, W. Greiner, Phys. Rev. C 53, 3014-3021 (1996)
Cold fission as cluster decay with
dissipation
70. [21] in E. Stefanescu, P. Sterian, Opt.
Engineering 35, 1573-1575 (1996)
Exact quantum
master equations for Markoffian systems
71. [21] in E. Stefanescu, P. Sterian,
Proceedings SPIE of Conference on Optics "ROMOPTO'97", Bucharest, Romania (1997), 3405, 877-882 (1998), SPIE Bellingham (USA), (Eds. V.I. Vlad, D.C. Dumitras)
Non-Markovian
effects in dissipative systems
72. [21] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Proceedings of the 5th International Wigner Symposium, Vienna, Austria (1997), pp. 355-358, World Scientific, Singapore (1998) (Eds. P. Kasperkovitz, D. Grau)
Diffusion and friction coefficients
in equation for Wigner distribution function
73. [21] in E. Stefanescu, R.J. Liotta and A.
Sandulescu, Phys. Rev. C 57, 798-805 (1998)
Giant resonances as collective states
with dissipative coupling
74. [21] in G. Lindblad, J. Math. Phys. 39,
2763-2780 (1998)
Brownian motion of quantum harmonic
oscillators: Existence of a subdynamics
75. [21] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Lett. A 244, 482-488 (1998)
Tunneling with dissipation in open
quantum systems
76. [21] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Nucl. Phys. A 645, 376-398 (1999)
Friction and diffusion coefficients
in coordinate in nonequilibrium nuclear processes
77. [21] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
Diffusion and
friction coefficients in the Lindblad axiomatic approach to
nonequilibrium nuclear processes
78. [21] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Lett. A 260, 39-45 (1999)
Diffusion coefficients in coordinate
in density matrix description of nonequilibrium quantum processes
79. [21] in E. Stefanescu, A. Sandulescu, Rom.
J. Optoelectronics 7, 59-65 (1999)
Dissipative processes through
Lindblad's master equation
80. [21] in E. Stefanescu, A. Sandulescu and W.
Scheid, Int. J. Mod. Phys. E 9, 17-50 (2000)
The collisional decay of a Fermi
system interacting with a many-mode electromagnetic field
81. [21] in E. Stefanescu, Sisteme disipative,
Ed. Academiei Romane, Bucuresti (2000)
82. [21] in S. Misicu, J. Phys. G: Nucl. Part.
Phys. 26, 1447-1459 (2000)
Quantum dissipation in cluster decay
phenomena: I. Smoothly joined quadratic potentials
83. [21] in Yu.V. Palchikov, G.G. Adamian, N.V.
Antonenko, W. Scheid, J. Phys. A 33, 4265-4276 (2000)
Effect of transport coefficients on
the time dependence of a density matrix
84. [21] in V.V. Dodonov, S.S. Mizrahi, A.L.
Souza Silva, J. Opt. B: Quantum Semiclass. Opt. 2, 271-281
(2000)
Decoherence and thermalization
dynamics of a quantum oscillator
85. [21] in M.C. de Oliveira, N.G. Almeida,
S.S. Mizrahi, M.H.Y. Moussa, Phys. Rev. A 62, 012108 (11p)
2000)
Quantum to classical transition from
the cosmic background radiation
86. [21] in E. Stefanescu, A. Sandulescu, Int.
J. Mod. Phys. E 11, 119-130 (2002)
Microscopic coefficients for the
quantum master equation of a Fermi system
87. [21] in B. Vacchini, J. Math. Phys. 43,
5446-5458 (2002)
Quantum optical versus quantum
Brownian motion master equation in terms of covariance and equilibrium
properties
88. [21] in Yu.V. Palchikov, G.G. Adamian, N.V.
Antonenko, W. Scheid, Physica A 316, 297-313 (2002)
Generalization
of Kramers formula for open quantum systems
89. [21] in I. Sturzu, quant-ph/0204014 (2002)
(Rom. J. Phys)
Topics on the stochastic treatment of
the evolution of an open quantum system
90. [21] in L.M. Ping, Z.Y. Zhang, J. Wuhan Univ. (Natural Science Ed.) , 581-584 (2002)
Effective Hamiltonian of open quantum system and several new solvable models
91. [21] in I. Sturzu, quant-ph/0204110 (2002)
State transformations after quantum
fuzzy measurements
92. [21] in M.R. Gallis, quant-ph/0210054
(2002)
Open environments for quantum open
systems
93. [21] in I.
Sturzu, Ph.D. Thesis, Bucharest University (2002) (in Romanian)
Studies on evolution
of classical and quantum systems
94. [21] in V.V. Dodonov, V.I. Man'ko, Theory of
non-classical states of light, Taylor & Francis (2003)
95. [21] in E.P. Zhidkov, Yu. Yu. Lobanov, V. D. Rushai, preprint P11-2003-114, JINR Dubna, 2003, 15p
Numerical study of open quantum systems by the method of approximate functional integration with respect to conditional Wiener measure
96. [21] O. Brodier,
A.M.O. de Almeida, Phys. Rev. E 69, 016204 (11p) (2004)
Symplectic evolution of Wigner functions in
Markovian open systems
97. [21] in Z. Kanokov, Yu.V. Palchikov, G.G. Adamian, N.V.
Antonenko, W. Scheid, Phys. Rev. E 71, 016121 (20p) (2005)
Non-Markovian dynamics of quantum systems.
I. Formalism and transport coefficients
98. [21] in Yu.V. Palchikov, Z. Kanokov,
G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. E 71, 016122 (10p) (2005)
Non-Markovian dynamics of quantum systems.
II. Decay rate, capture and pure state
99. [21] in B. Vacchini, Int. J. Theor. Phys. 44,
1011-1021 (2005)
Master equations for the study of
decoherence
100. [21] in E. Stefanescu, Physica A 350,
227-244 (2005)
Dynamics of a Fermi
system with resonant dissipation and dynamical detailed balance
101. [21] in Sabrina Maniscalco, Phys. Rev. A 72 ,
024103 (4p) (2005)
Limits in the characteristic-function
description of non-Lindblad-type open quantum systems
102. [21] in G.G. Adamian, N.V. Antonenko, Z. Kanokov, V.V.
Sargsyan, W. Scheid, Theor. Math. Phys. 145, 1443-1456 (2005)
Quantum non-Markovian stochastic equations
103. [21] in V.V. Dodonov, J. Opt. B: Quantum Semiclass. Opt.
7, S445-S451 (2005)
Time-dependent quantum damped oscillator with
"minimal noise": application to the nonstationary Casimir effect in nonideal cavities
104. [21] in V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V.
Antonenko, Phys. Atomic Nuclei 68, 2009-2021 (2005)
Quantum non-Markovian Langevin equations and transport
coefficients
105. [21] in E. Stefanescu, A.R. Sterian, P. Sterian, Proc. SPIE of the Conference "Advanced Laser Technologies 2004", Rome, Italy (2004),
5850, 160-165, SPIE Bellingham, USA (2005) (Eds. I.A. Shcherbakov, A. Giardini, V.I. Konov, V.I. Pustovoy)
Study of the fermion systems coupled by electric dipole
interaction with the free electromagnetic field
106. [21] M. Genkin, Diploma paper, Giessen University
(2006)
Application of the Lindblad theory for open quantum systems to
a two-dimensional parabolic potential
107. [21] in V.V. Dodonov, A.V. Dodonov, J. Russian Laser Res.
27, 379-388 (2006)
The Heisenberg-Langevin model of a quantum damped
harmonic oscillator with time-dependent frequency and damping coefficients
108. [21] in A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E
75, 011132 (10p) (2007)
Quantum master equations from classical Lagrangians
with two stochastic forces
109. [21] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
A two-dimensional inverse parabolic potential within the
Lindblad theory for application in nuclear reactions
110. [21] in V.V. Sargsyan, Yu.V. Palchikov, Z. Kanokov, G.G.
Adamian, N.V. Antonenko, Phys. Rev. A 75, 062115 (7p) (2007)
Coordinate-dependent diffusion coefficients: Decay rate in open
quantum systems
111. [21] G. Manfredi, P.A. Hervieux, Applied Phys. Lett. 91,
061108 (3p) (2007)
Autoresonant control of the many-electron dynamics in
nonparabolic quantum wells
112. [21] E. Stefanescu, A. Sandulescu, Rom. J. Phys. 52,
193-215 (2007)
Dissipative dynamics of a system of fermions
113. [21] C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
114. [21] in U. Weiss, Quantum dissipative systems, 3rd edition, World Scientific, Singapore (2008)
115. [21] in R.S. Whitney, J. Phys. A: Math. Theor. 41, 175304 (18p) (2008)
Staying positive: going beyond Lindblad with perturbative master equations
116. [21] in A. Arnold, F. Fagnola, L. Neumann, math-ph/0806.2984 (2008)
Quantum Fokker-Planck models: the Lindblad and Wigner approaches
117. [21] in O. Brodier, A.M. Ozorio de Almeida, quant-ph/0808.2258 (2008)
Markovian evolution of localized quantum states in the semiclassical limit
118. [21] in A.C. Oliveira, A.R.B. de Magalhaes, quant-ph/0809.1446 (2008) 6p
Decoherence and irreversibility: the role of the reservoir effective Hilbert space size
119. [21] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
Description of resonance decay by Lindblad operators
120. [24] in E.A. Akhundova, M.A. Mukhtarov, J. Phys. A: Math. Gen. 28,
5287-5289 (1995)
Smoothed Wigner function of a quantum
damped oscillator
121. [24] in M.R. Gallis, Phys. Rev. A 53, 655-660 (1996)
Emergence of classicality via
decoherence described by Lindblad operators
122. [24] in G.A. Worth, H.D. Meyer, L.S.
Cederbaum, J. Chem. Phys. 105, 4412-4426 (1996)
The effect of a model environment on
the S2 absorption spectrum of pyrazine: A
wave packet study treating all 24 vibrational modes
123. [24] in Gh.S. Paraoanu, H. Scutaru, Phys. Lett. A 238, 219-222
(1998)
Classical states via decoherence
124. [24] in R.C. de Berredo, J.G.P. de Faria, F. Camargo,
M.C. Nemes, H.E. Borges, K.H.F. Romero, A.F.R.D. Piza, A.N. Salgueiro, Phys.
Scripta 57, 533-534 (1998)
On the physical content of Lindblad
form master equations
125. [24] in J.O. Akeyo, preprint, Maseno University College, Kenya, May 1998,
18p
On the Hamiltonian formalism for
classical and quantum theories of damped linear harmonic oscillators
126. [24] in Gh.S. Paraoanu, Europhys. Lett. 47, 279-284 (1999)
Selection of squeezed states via decoherence
127. [24] in B. Vacchini, quant-ph/0002094
Completely positive quantum dissipation
128. [24] in D. Popov, Czech. J. Phys. 52, 993-1010 (2002)
New coherent states for the BDS-Hamiltonian
129. [24] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
130. [25] in H. Rosu, preprint IFUG-24-1994, Guanajuato Univ., Nov. 1994, 84p
(cited as Preprint IFA-FT-396-1994, hep-th/9406142 (1994))
Pedestrians notes in quantum
fundamentals
131. [25] in J. Rheinländer, Ph.D. Thesis, Götingen University
(1999)
Characteristics of the generators of
dynamical semigroups
132. [25] in A.V. Churkin, Mathematical Notes {\bf 78}, 867-873
(2005) (cited as hep-th/9406142)
Stochastic Schröodinger equation for a quantum
oscillator with dissipation
133. [25] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
134. [27] in E. Stefanescu, Sisteme disipative,
Ed. Academiei Romane, Bucuresti (2000)
135. [27] in V.E. Tarasov, Phys. Lett. A 299, 173-178 (2002)
Stationary states of dissipative
quantum systems
136. [27] in V.E. Tarasov, Phys. Rev. E 66, 056116 (7 p) (2002)
Pure stationary states of open quantum systems
137. [27] in J.L. Garcia Palacios, Europhys. Lett. 65, 735-741 (2004)
Solving quantum master
equations in phase space by continued-fraction methods
138. [27] in J.L. Garcia Palacios, D. Zueco, J. Phys. A: Math. Gen. 37,
10735-10770 (2004)
Caldeira-Leggett
quantum master equation in Wigner phase space: continued-fraction
solution and application to Brownian motion in periodic potentials
139. [27] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
140. [27] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
A two-dimensional inverse parabolic potential within the
Lindblad theory for application in nuclear reactions
141. [29] in E. Stefanescu, P. Sterian,
Proceedings SPIE of Conference on Optics "ROMOPTO'97", Bucharest, Romania (1997), 3405, 877-882 (1998), SPIE Bellingham (USA), (Eds. V.I. Vlad, D.C. Dumitras)
Non-Markovian effects in dissipative systems
142. [31] in G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl.
Phys. A 645, 376-398 (1999)
Friction and diffusion coefficients
in coordinate in nonequilibrium nuclear processes
143. [31] in V.V. Dodonov, S.S. Mizrahi, A.L. Souza
Silva, J. Opt. B: Quantum Semiclass. Opt. 2, 271-281 (2000)
Decoherence and thermalization
dynamics of a quantum oscillator
144. [31] in F. Benatti, R. Floreanini, J. Phys. A:
Math. Gen. 33, 8139-8153 (2000)
Damped harmonic oscillator in the
holomorphic representation
145. [31] in R.W. Rendell, A.K. Rajagopal, Phys.
Lett. A 279, 175-180 (2001)
Control of decoherence and
correlation in single quantum dissipative oscillator systems
146. [31] in B. Vacchini, Phys. Rev. E 63, 066115 (8p) (2001)
Test particle in a quantum gas
147. [31] in L. Lanz, B. Vacchini, Int. J. Mod. Phys. A 17, 435-463
(2002)
Subdynamics of
relevant observables: a field theoretical approach
148. [31] in B. Vacchini, J. Math. Phys. 43, 5446-5458 (2002)
Quantum optical versus quantum
Brownian motion master equation in terms of covariance and equilibrium properties
149. [31] in A. Volya, H. Esbensen, Phys. Rev. C 66, 044604 (10p)
(2002)
Role of E1-E2
interplay in multiphonon Coulomb excitation
150. [31] in I. Sturzu, quant-ph/0204110 (5p)
State transformations after quantum
fuzzy measurements
151. [31] in B. Vacchini, Phys. Rev. E 66, 027107 (4p) (2002)
Non-Abelian linear Boltzmann equation
and quantum correction to Kramers and Smoluchowski equation
152. [31] in B. Vacchini, Int. J. Theor. Phys. 43, 1515-1525 (2004)
Dissipative systems and objective
description: Quantum Brownian motion as an example
153. [31] in M.R. Gallis, quant-ph/0210054 (2002)
Open environments for quantum open systems
154. [31] in I. Sturzu,
Ph.D. Thesis, Bucharest University (2002) (in Romanian)
Studies on evolution
of classical and quantum systems
155. [31] in V.V. Dodonov, V.I. Manko, Theory of non-classical states of light,
Taylor & Francis (2003)
156. [31] in Yu.V. Palchikov, Z. Kanokov, G.G. Adamian,
N.V. Antonenko, W. Scheid, Phys. Rev. E 71, 016122 (10p) (2005)
Non-Markovian dynamics of quantum systems. II.
Decay rate, capture and pure states
157. [31] in G.V. Ryzhakov, Russian J. Math. Phys. 12, 386-393 (2005)
Asymptotic solutions of the quantum stochastic
Liouville equation for an oscillator with regard to dissipation
158. [31] in G.G. Adamian, N.V. Antonenko, Z. Kanokov, V.V. Sargsyan,
W. Scheid, Theor. Math. Phys. 145, 1443-1456 (2005)
Quantum non-Markovian stochastic equations
159. [31] in A.V. Churkin, Mathematical Notes 78, 867-873
(2005) (cited as hep-th/9406142)
Stochastic Schrödinger equation for a quantum
oscillator with dissipation
160. [31] in S. Boixo, L. Viola, G. Ortiz, quant-ph/0609068
Generalized coherent states as preferred
states of open quantum systems
161. [31] in A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E 75,
011132 (10p) (2007)
Quantum master equations from classical Lagrangians
with two stochastic forces
162. [31] in Y. Liu, Y. Zheng, W. Ren, S. Ding, Phys. Rev. A
78, 032523 (9p) (2008)
Dynamical entanglement of vibrations in small molecules through an analytically algebraic approach
163. [32] in G.G. Adamian, N.V. Antonenko, W.
Scheid, Phys. Atomic Nuclei 62, 1338-1348 (1999)
Diffusion and friction coefficients
in the Lindblad axiomatic approach to nonequilibrium nuclear processes
164. [32] in V.V. Dodonov, S.S. Mizrahi, A.L. Souza
Silva, J. Opt. B: Quantum Semiclass. Opt. 2, 271-281 (2000)
Decoherence and thermalization
dynamics of a quantum oscillator
165. [32] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane,
Bucuresti (2000)
166. [32] in R.W. Rendell, A.K. Rajagopal, Phys. Lett. A 279, 175-180
(2001)
Control of decoherence and
correlation in single quantum dissipative oscillator systems
167. [32] in A.K. Rajagopal and R.W. Rendell, Phys.
Rev. A 63, 022116 (11p) (2001)
Decoherence, correlation and
entanglement in a pair of coupled quantum dissipative oscillators
168. [32] in A.L. Souza Silva, W. Duarte Jose, V.V.
Dodonov, S.S. Mizrahi, Phys. Lett. A 282, 235-244 (2001)
Production of two-Fock states
superpositions from even circular states and their decoherence
169. [32] in M.R. Gallis, quant-ph/0210054 (2002)
Open environments for quantum open systems
170. [32] in W.S. Zhu, H. Rabitz, J. Chem. Phys. 118, 6751-6757 (2003)
Closed loop learning control to
suppress the effects of quantum decoherence
171. [32] in J. Gong, P. Brumer, Phys. Rev. A 68, 022101 (8p) (2003)
Intrinsic decoherence
dynamics in smooth hamiltonian systems: Quantum-classical correspondence
172. [32] in J. Gong, P. Brumer, J. Mod. Opt. 50, 2411-2422 (2003)
Quantum versus classical decoherence dynamics
173. [32] in J. Gong, P. Brumer, Phys. Rev. A 68, 062103 (12p) (2003)
Chaos and
quantum-classical correspondence via phase space distribution functions
174. [32] in V.V. Dodonov, V.I. Manko, Theory of non-classical states of light,
Taylor& Francis (2003)
175. [32] in S.L. Adler, J. Phys. A: Math. Gen. 38, 2729-2745 (2005)
Stochastic collapse
and decoherence of a non-dissipative forced harmonic oscillator
176. [32] in A.V. Novikov, Ph. D. Thesis, Technical University Chemnitz (2005)
Path integral formulation of dissipative quantum dynamics
177. [32] in V.V. Dodonov, L.A. de Souza, J. Optics B: Quantum Semiclass.
Optics 7, S490-S499 (2005)
Decoherence of superpositions of displaced number
states
178. [32] in M. Ban, J. Phys. A: Math. Gen. 39, 1927-1943 (2006)
Decoherence of continuous variables quantum
information in non-Markovian channels
179. [32] in H. Kohler, F. Sols, New J. Phys. 8, 149 (26p) (2006)
Dissipative quantum oscillator with two competing
heat baths
180. [32] in M.H. Naderi, M. Soltanolkotabi, Eur. Phys. J. D 39,
471-479 (2006)
Influence of nonlinear quantum dissipation on the
dynamical properties of the f-deformed Jaynes-Cummings model in the dispersive
limit
181. [32] in V.V. Dodonov, A.V. Dodonov, J. Russian Laser Res. 27,
379-388 (2006)
The Heisenberg-Langevin model of a quantum damped
harmonic oscillator with time-dependent frequency and damping coefficients
182. [37] in H. Nakazato, Y. Hida, K. Yuasa, B. Militello,
A. Napoli, A. Messina, Phys. Rev. A 74, 062113 (8p) (2006)
How to solve the Lindblad equation:
solution in the Kraus representation
183. [32] in A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E 75,
011132 (10p) (2007)
Quantum master equations from classical Lagrangians
with two stochastic forces
184. [32] in V.V. Dodonov, Phys. Lett. A 364, 368-371 (2007)
Wigner functions and statistical moments of quantum states with
definite parity
185. [32] in V.V. Dodonov, L.A. de Souza, J. Phys. A: Math. Theor. 40,
13955-13974 (2007)
Decoherence of multicomponent symmetrical superpositions of displaced quantum states
186. [32] in V.V. Dodonov, L.A. de Souza, J. Russ. Laser Res. 28,
453-482 (2007)
Decoherence of multicomponent and multimode generalizations of even/odd coherent states in thermal and phase transitions
187. [32] in M.H. Naderi, Canad. J. Phys. 85,
1071-1096 (2007)
Intrinsic decoherence effects on quantum dynamics of the non-degenerate two-photon
f-deformed Jaynes-Cummings model governed by the Milburn equation
188. [32] C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
189. [32] in E. Karimzadeh Esfahani, R. Roknizadeh, M.H. Naderi, quant-ph/0710.3839 (2007)
Dissipative dynamics of the semiconductor-cavity QED with q-deformed bosons in the
dispersive approximation
190. [32] in E. Pollak, J.S. Shao, D.H. Zhang, Phys. Rev. E 77, 021107 (2008)
Effects of initial correlations on the dynamics of dissipative systems
191. [32] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
Description of resonance decay by Lindblad operators
192. [33] in S. Misicu, J. Phys. G: Nucl. Part. Phys. 26, 1447-1459
(2000)
Quantum dissipation in cluster decay phenomena:
I. Smoothly joined quadratic potentials
193. [33] in E. Stefanescu, Sisteme disipative, Ed. Academiei Romane,
Bucuresti (2000)
194. [33] in V.V. Dodonov, V.I. Man'ko, Theory of non-classical states of
light, Taylor& Francis (2003)
195. [33] in M. Genkin, Diploma paper, Giessen University (2006)
Application of the Lindblad theory for open quantum systems to
a two-dimensional parabolic potential
196. [33] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
A two-dimensional inverse parabolic potential within the
Lindblad theory for application in nuclear reactions
197. [33] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
Description of resonance decay by Lindblad operators
198. [39] in D. Galetti, S.S. Mizrahi, M. Ruzzi, quant-ph/0404074 (2004) (2007)
The wigner function associated to the
Rogers-Szegö polynomials
199. [39] in S.S. Mizrahi, J.P. Camargo Lima, V.V. Dodonov, J. Phys. A: Math.
Gen. 37, 3707-3724 (2004)
Energy spectrum, potential and inertia functions
of a generalized f-oscillator
200. [39] in J.P. Camargo Lima, Ph. D. Thesis, Sao Carlos University, Brazil (2006)
Relaxation processes in quantum systems and algebras of nonlinear operators
201. [40] C. Hörhammer, Ph. D. Thesis, Bayreuth University (2007)
Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems
202. [41] in D. Galetti, S.S. Mizrahi, M. Ruzzi, quant-ph/0404074 (2004) (2007)
The wigner function associated to the
Rogers-Szegö polynomials
203. [41] in S.S. Mizrahi, J.P. Camargo Lima, V.V. Dodonov, J. Phys. A:
Math. Gen. 37, 3707-3724 (2004)
Energy spectrum, potential and inertia functions
of a generalized f-oscillator
204. [41] in J.P. Camargo Lima, Ph. D. Thesis, Sao Carlos University, Brazil (2006)
Relaxation processes in quantum systems and algebras of nonlinear operators
205. [41] in M. Genkin, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34, 441-450 (2007)
A two-dimensional inverse parabolic potential within the
Lindblad theory for application in nuclear reactions
206. [41] in J. Cuevas, P.A.S. Silva, F.R. Romero, L. Cruzeiro, Phys. Rev. E 76, 011907 (8p) (2007)
Dynamics of the Davydov-Scott monomer in a thermal bath: Comparison of the full quantum and semiclassical approaches
207. [44] in M.H. Naderi, M. Soltanolkotabi, Eur. Phys. J. D 39,
471-479 (2006)
Influence of nonlinear quantum dissipation on the
dynamical properties of the f-deformed Jaynes-Cummings model in the
dispersive limit
208. [44] in J.P. Camargo Lima, Ph. D. Thesis, Sao Carlos University, Brazil (2006)
Relaxation processes in quantum systems and algebras of nonlinear operators
209. [44] in H.H. Zhang, X.G. Zhou, High Energy Phys. Nucl. Phys.
(Chin. Ed.) 31, 337-340 (2007)
Antibunching properties of q-deformed coherent light field
interacting with a cascade three-level atom
210. [44] in H.H. Zhang, A. Rauf, X.G. Zhou, Proc. of Prog. Electromag. Res. Symp.,
904-907 (2007), PIERS Beijing, 2007, Publ.: Electromagnetics Acad., Cambridge (USA), (Ed. J.A. Kong)
Entanglement theory and a q-analogue entangled
state
211. [44] in S.N. Yao, X.G. Zhou, H.H. Zhang, Optical Technology 33, 676 (2007)
212. [50] in M. Genkin, Diploma paper, Giessen University (2006)
Application of the Lindblad theory for open quantum systems to
a two-dimensional parabolic potential
213. [50] in R.M. Angelo, Phys. Rev. A {\bf 76}, 052111 (9p) (2007)
Correspondence principle for the diffusive dynamics of a quartic oscillator: Deterministic aspects and the role of temperature
214. [50] in J.A. Messer, Ph. D. Thesis, Giessen University (2007)
Realism problem of quantum mechanics using the decoherence interpretation
215. [50] in M. Genkin, E. Lindroth, J. Phys. A: Math. Theor. 41, 425303 (13p) (2008)
Description of resonance decay by Lindblad operators
Back to my Homepage
Goto Top