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OUTLINE
• Macroscopic-microscopic approach

• Experimental shapes of deposited clusters and mass spectrum of free clusters

• Liquid drop model of metallic clusters (binding and deformation energy)
• Neutral free spheroidal Na cluster
• Hemisphere and Hemispheroidal shapes
• Simulating the interaction with the surface
• Short and long spheroidal caps

• Deformed single particle shell models
• Spheroidal harmonic oscillator
• Hemispheroidal harmonic oscillator
• Influence of the l2 term

• Microscopic shell and pairing corrections

• Equilibrium shapes of Na clusters

• Conclusions
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Liquid Drop Model + corrections

John William Strutt (Lord Rayleigh), Phil. Mag. 14 (1878) 184: Capilarity instability of a
jet of fluid.
Niels Bohr, Nature 137 (1936) 344: LDM applied to atomic nuclei

Explained the induced nuclear fission:
• Lise Meitner and O. Frisch, Nature 143 (1939) 239
• N. Bohr and J. Wheeler, Phys. Rev. 56 (1939) 426
V.M. Strutinsky Nucl. Phys. A 95 (1967) 420: shell+pairing corrections. Since 1967, the
Macroscopic-Microscopic method successfully used in Nuclear Physics.

Adapted to atomic cluster physics in the 90s.
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Macroscopic-microscopic meth.
LDM is suitable since delocalized conduction electrons of a

metallic cluster form a Fermi liquid like the atomic nucleus.

• Macroscopic Liquid Drop Model: ELD

• Single-particle shell model (SPSM): energy levels vs.

deformation time consuming computations

• Shell + pairing correction method: δE = δU + δP

• Total deformation energy: Edef = ELD + δE

for a given parametrization of the drop surface ρ = ρ(z). The

potential part of SPSM Hamiltonian should admit ρ = ρ(z) as an

equipotential surface.

For deposited clusters we choose the hemispheroidal shape,

allowing to obtain analytical results.
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Compare M-MA: nuclei & AC

Orders of magnitude for a Na cluster. 1 Å= 0.1 nm.

Quantity Nucleus Atomic Cluster Ratio N/A

Binding Energy 8 MeV/nucleon 2 eV/atom 4 · 106

Radius constant 1.16 fm 2.117 Å 5 · 10−6

Shell gap ~ω0

for A or n =125 8.2 MeV 0.61 eV 1.3·107

For a neutral atomic cluster there is no Coulomb energy. The

curvature energy should be taken into account. When we

calculate microscopic corrections for a nucleus we have to

consider separately the level schemes of protons and neutrons.
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Cluster shapes and volumes
Cylindrical symmetry.

• sphere, V 0
ol = 4πR3

0/3, R0 = rsN
1/3

• spheroid, V 0
ol = 4πa2cR3

0/3

• hemisphere, V s
ol = 2πR3

s/3, Rs = 21/3R0

• hemispheroid, V s
ol = 2πa2cR3

s/3

• short spheroidal cap (h = c− d),
V (δ) = πR3

sch
2 a2

3c2
(3c− h), Rsc = 41/3R0[h

2
0(3 − h0)]

−1/3

• long spheroidal cap (h = c+ d),
V (δ) = πR3

sch
2 a2

3c2
(3c− h)

Equilibrium shapes — minima of deformation energy.
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FEW EXPERIMENTAL FACTS
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Prolate clusters on a surface
Ultrasensitive microscopy: Scanning tunneling microscope
(STM) — 1981 Gerd Binnig and Heinrich Rohrer (Nobel
Prize 1986). Atomic Force Microscope (AFM), etc.

Au colloids deposited on a special

glass. B. Bonanni and S. Cannistraro,

J. Nanotechnology Online, Nov. 11,

2005. DOI: 10.2240/azojono0105.

Clusters projected with energy close

to the threshold stay at the impact

point. Loughborough University &

University of Birmingham.
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Oblate clusters on a surface

AFM image of Bi clusters supported on

a SiO2 surface. J.C. Partridge, S.A.

Brown et al., Phys. Stat. Sol. (a) 203

(2006) 1217

One of the cluster from the above fig-

ure. Simon A. Brown, private com-

munication, 2008
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Mass spectrum Na free clust.

(a) Mass spectrum detected with

a quadrupole mass analyser.

Major peaks at 8, 20, 40, 58.

(b) Calculated 2nd differences in

total electronic energies.

Next magic numbers: 92, 136, 198, 264, 344, 442, ...

From W. D. Knight et al. Phys. Rev. Lett. 52 (1984) 2141–2143.
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NEUTRAL FREE SPHEROIDAL
NA CLUSTER
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Binding en., spherical Na clusters
EN = αvN + αsN

2/3 + αcN
1/3

0 20 40 60 80 100 120 140

N

1.6

1.8

2.0

2.2
E
b
/N
(e
V
)

without curvature en.
with curvature en.

Fig: Binding energy per atom (−Eb/N )

Material properties: volume, surface, curvature coeff. of Na

αv = −2.252, αs = 0.541, αc = 0.154, determined by fitting the

Extended Thomas-Fermi-LDA for spherical shapes.

(C. Yannouleas, U. Landman, Phys. Rev. B 51 (1995) 1902)
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Geometry and material properties
Energies in eV for Na (monovalent) spherical cluster with N

atoms

E0
v = −2.252N

Volume energy is proportional to the volume.

E0
s = 0.541N2/3

Surface energy is proportional to the surface area and to the

surface tension σ: E0
s = 4πR2

0σ = 4πr2
sσN2/3, 4πr2

sσ = 0.541 eV

E0
curv = 0.154N1/3

Curvature energy is proportional to the integrated curvature,

K0 =
∫

dSκ = 4πR0, and to the curvature tension γc:

E0
curv = 4πR0γc = 4πrsγcN

1/3, 4πrsγc = 0.154 eV
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Prolate & oblate spheroids

0
c

z

a
ρ2

a2
+

z2

c2
= 1 ρ2 = x2 + y2 a2c = 1
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Spheroidal deformation
Spheroidal deformation δ
δ < 0 oblate δ > 0 prolate
(K.L. Clemenger, PhD Thesis, Univ. of California, Berkeley, 1985)

Dimensionless semiaxes (units of R0 = rsN
1/3 for

spheroid and of Rs = 21/3R0) for hemispheroid

a =

(

2 − δ

2 + δ

)1/3

; c =

(

2 + δ

2 − δ

)2/3

a

c
=

2 − δ

2 + δ
= a3

rs – Wigner-Seitz radius. N – number of atoms
(delocalized conduction electrons)
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LDM for spheroidal Na cluster

Volume is conserved. The vol. energy is
independent on deformation.
Deformation energy with respect to spherical
shape (surface + curvature)

E − E0 = (Es − E0
s) + (Ec − E0

c )

E − E0 = E0
s

(

Es

E0
s

− 1

)

+ E0
c

(

Ec

E0
c

− 1

)

E − E0 = E0
s(Bsurf − 1) + E0

curv(Bcurv − 1)

Dimensionless deformation-dependent terms:
Bsurf , Bcurv
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Cylindrically symmetric shapes
The deformation-dependent surface and curvature energies for

cylindrical symmetry (surface equation ρ = ρ(z) with −c,+c tips

on z-axis and ρ′ = dρ/dz, ρ′′ = d2ρ/dz2) are

Bsurf =
S

4πR2
0

=
1

2

∫ +c

−c
dzρ

√

1 + ρ′2 =
1

2

∫ +c

−c
dz

√

ρ2 + (ρρ′)2

Bcurv =
1

4πR0

∫

dSκ =
1

4

∫ +c

−c
dz

1 + ρ′2 − ρρ′′

1 + ρ′2

The local curvature κ = 0.5(R−1
1 + R−1

2 ) where the principal radii

of curvature (D.N. Poenaru, R.A. Gherghescu, W. Greiner, Nucl.

Phys. A 747 (2005) 182)

R1 = R0ρ
√

1 + ρ′2 R2 = −R0(1 + ρ′2)3/2/ρ′′
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Energies of spheroidal shapes

Bsurf =
a

2c2

∫ +c

−c
dz

√

c4 + z2(a2 − c2)

Bcurv =
c

2
+

a2c2

4

∫ +c

−c

dz

c4 + z2(a2 − c2)
=

c

2
+

c

4

∫ +c

−c

dz

c4 + z2(a2 − c2)

Oblate (a > c , eccentricity e =
√

a2/c2 − 1 ):

Bsurf =
a

2

(

a +
c

2e
ln

a + ce

a − ce

)

Bcurv =
c

2
+

a2

2ce
arctan e

Misprint in formula of Bsurf in a book by Hasse & Myers, Geometrical ... (Springer,1988).

Correct in Beringer & Knox, Phys. Rev. 121 (1961) 1195.

Prolate (a < c , eccentricity e =
√

1 − a2/c2 ):

Bsurf =
a

2

(

a +
c

e
arcsin e

)

Bcurv =
c

2
+

a2

4ec
ln

∣

∣

∣

∣

1 + e

1 − e

∣

∣

∣

∣
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NEUTRAL HEMISPHEROIDAL
NA CLUSTER ON A PLANAR
SURFACE
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Surface parametrization
Hemispheroid with z-axis ⊥ on the surface plane

a

z

c

ρ2 =







(a/c)2(c2 − z2) z ≥ 0

0 z < 0

c > a – prolate c < a – oblate
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Binding en. of hemisph. clusters
Volume: 1)sphere V 0

ol = 4πa2cR3
0/3;

2)hemisphere V s
ol = 2πa2cR3

s/3

Rs = 21/3R0

E − Es0 = Es0
s

(

Bs
surf − 1

)

+ Es0
c (Bs

curv − 1)

Es0
s = (3/42/3)E0

s ; Es0
c = E0

curv/4
1/3

Binding energy for Na hemispherical cluster with
N atoms:

EsN = −2.252N +
3

42/3
0.541N2/3 +

1

41/3
0.154N1/3
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Binding energy for Na clusters

0 20 40 60 80 100 120 140

N

1.6

1.8

2.0

2.2

E
b
/N
(e
V
)

sphere
semi-sphere

Binding energy per atom (−Eb/N ) versus the
number of atoms N for Na clusters. Hemisphere
& sphere.
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Def. en. hemisph. clusters
Oblate (a > c) hemispheroid, e2 = a2/c2 − 1

Bs
surf =

a

3

[

2a+
c

e
ln

(

e+
a

c

)]

Bs
curv =

c

2
+

a2

2ce
arctan e

Prolate (c > a) hemispheroid, e2 = 1 − a2/c2

Bs
surf =

a

3

(

2a+
c

e
arcsin e

)

Bs
curv =

c

2
+

a2

4ce
ln

∣

∣

∣

∣

1 + e

1 − e

∣

∣

∣

∣
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Surface area of Na56 cluster
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N = 56

SPHEROID Smin = 8.24 nm
2

SEMI-SPHEROID Smin = 9.11 nm
2

Liquid drop stability
The spherical shape is
the most stable for a
spheroid.
The prolate superde-
formed shape is the
most stable for a hemi-
spheroid because the
surface of a circular
base is decreasing with
deformation while the
external area is smaller
at δ = 0.
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LDM hemisph. Na56 cluster
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Ev = - 126.1 eV

Surface plus curvature deformation energy with respect to
a hemisphere and absolute values. The minimum is
around the supereformed prolate shape with
δ = 0.65 (c/a = 1.96), unlike for a spheroid (δ = 0).
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Surface + curvature energy
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Deformation energy contour plot with respect to a
hemisphere and absolute values. Equilibrium for
superdeformed prolate shape at all N .

Special Lecture MesoBioNano Sci. FIAS, December 5, 2008 – p.26/83



Dorin N. POENARU

SIMULATING THE
INTERACTION WITH THE
SURFACE

Special Lecture MesoBioNano Sci. FIAS, December 5, 2008 – p.27/83



Dorin N. POENARU

Water droplet - LDM

In contact with a solid the liquid behavior depends on the surface

tension σ and the attractive forces between the molecules of the

liquid and of solid. If an H2O molecule is more strongly attracted

to its own kind, then σ will dominate, increasing the curvature of

the interface. A clean glass surface has -OH groups which attach

to water molecules through hydrogen bonding; this causes the

water to wet the surface. A detergent added to water reduces σ.
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Simulating the interaction
Surface tension of the base is changed from σ to iσ,
i ∈ (−1.98,2). i is the interaction factor.
For i = 1 one has the previously studied case:
Our group, EPL 79 (2007) 63001;

EPJD (2008) online, doi: 10.1140/epjd/e2008-00066-6 → HIGHLIGHT PAPER

E = Ebase + Eext = iσSbase + σSext

The curvature of a planar surface is zero, hence Ecurv

remains unchanged. For δ = 0 (hemisphere):

Esi0
s = iσ(πR2

s) + σ(2πR2
s) = 4−2/3(2 + i)E0

s

Esi0
c = 2πRsγc = 4−1/3E0

curv

γc – curvature tension
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Deformation energy analytical rel.
With respect to hemispherical shape

Esi − Esi0 = Esi0
s

(

Bsi
surf − 1

)

+ Esi0
c

(

Bsi
curv − 1

)

Oblate hemispheroid (a > c, e2 = a2/c2 − 1)

Bsi
surf =

i

2 + i
a2 +

1

2 + i

[

a2 +
ac

e
ln

(

e+
a

c

)]

Bsi
curv = Bs

curv = c
2

+ a2

2ce
arctan e

Prolate hemispheroid (c > a, e2c2 = c2 − a2)

Bsi
surf =

i

2 + i
a2 +

1

2 + i

[

a2 +
ac

e
arcsin e

]

Bsi
curv = Bs

curv = c
2

+ a2

4ce
ln

∣

∣

1+e
1−e

∣

∣
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Minima of deformation energy, Na56
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i = - 0.76
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Equilibrium shapes of Na56

i = 2, c/a = 2.9 i = 1, c/a = 1.9 i = 0, c/a = 1 i = - 0.58, a/c = 2 i = - 0.76, a/c = 3
2Rs = 2 nm

Na56

i = 2 hyperdeformed prolate
i = 1 superdeformed prolate

i = 0 hemisphere
i = −0.58 superdeformed oblate
i = −0.76 hyperdeformed oblate.
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Contour pl ELDrel, i = – 0.76, – 0.58
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Minima practically independent on N
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Contour plot ELDrel, i = 0, 2
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SHORT AND LONG
SPHEROIDAL CAPS
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Short Spheroidal Cap,h < c
Shape independent variables: δ , d0

z

0 a

h = c - d
r

d

ρ2 =







(a/c)2(c2 − z2) z ≥ d

0 z < d

lengths in units of

Rs = 41/3rsN
1/3[h2

0(3 − h0)]
−1/3

given d0 = d(δ = 0)

h0 = 1 − d0

r0 =
√

1 − d2
0

r2 = (a/c)2(c2 − d2) Volume conservation leads to

h3 − 3ch2 + c3h2
0(3 − h0) = 0 with a real solution h = ch0

see also V.V. Semenikhina, A.G. Lyalin, A.V. Solov’yov, W.

Greiner, J.E.T.P. 106 (2008) 679.
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Long Spheroidal Cap,h > c

2r
-d
0 a

c
z

h=c+d

ρ2 =







(a/c)2(c2 − z2) z ≥ −d
0 z < −d

lengths in units of Rs = 41/3rsN
1/3[h2

0(3 − h0)]
−1/3

given d0 = d(δ = 0), h0 = 1 + d0, r0 =
√

1 − d2
0

r2 = (a/c)2(c2 − d2) h = ch0
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Spherical cap,δ = 0, various i

Esc0
s =

2h0 + ir2
0

4

(

Rs

R0

)2

E0
s =

2h0 + ir2
0

4

(

Rs

R0

)2

4πR2
0σ

Esc0
c =

h0Rs

2R0

E0
curv =

h0Rs

2R0

4πR0γc

Deformation energy relative to the spherical cap

Esc − Esc0 = Esc0
s

(

Bsc
surf − 1

)

+ Esc0
c (Bsc

curv − 1)
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Analytical relationships, short cap

Oblate shape (a > c, e2 = a2/c2 − 1)

Bsc
surf =

1

ir2

0
+ 2h0

»

ir2 + a

„

a −
d

c

p

c2 + d2e2 +
c

e
ln

a + ec

ed +
√

c2 + d2e2

«–

Bsc
curv =

h

2h0

+
a2

2ec
(arctan e − arctan

de

c
)

Prolate shape (c > a, e2c2 = c2 − a2)

Bsc
surf =

1

ir2

0
+ 2h0



ir2 + a

»

a −
d

c

p

c2 − d2e2 +
c

e

„

arcsin e − arcsin
de

c

«–ff

Bsc
curv =

h

2h0

+
a2

4ec

„

ln

˛

˛

˛

˛

1 + e

1 − e

˛

˛

˛

˛

+ ln

˛

˛

˛

˛

ed − c

ed + c

˛

˛

˛

˛

«
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Analytical relationships, long cap

Oblate shape (a > c, e2 = a2/c2 − 1)

Bsc
surf =

1

ir2

0
+ 2h0

»

ir2 + a

„

a +
d

c

p

c2 + d2e2 +
c

e
ln

a + ec
√

c2 + d2e2 − ed

«–

Bsc
curv =

h

2h0

+
a2

2ec
(arctan e + arctan

de

c
)

Prolate shape (c > a, e2c2 = c2 − a2)

Bsc
surf =

1

ir2

0
+ 2h0



ir2 + a

»

a +
d

c

p

c2 − d2e2 +
c

e

„

arcsin e + arcsin
de

c

«–ff

Bsc
curv =

h

2h0

+
a2

4ec

„

ln

˛

˛

˛

˛

1 + e

1 − e

˛

˛

˛

˛

+ ln

˛

˛

˛

˛

ed + c

ed − c

˛

˛

˛

˛

«

Special Lecture MesoBioNano Sci. FIAS, December 5, 2008 – p.40/83



Dorin N. POENARU

Deformation energy Na56 i = 0, 1
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Contour plot ELDrel, Na8, i = −0.76

(δ, h0)min = −0.96, 0.92 ; ELDrel = −0.237 ; ELDabs = 0.964 eV
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Contour pl ELDrel Na8, Na148 i = 1
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Contour plot ELDrel Na148 i = −0.76

(δ, h0)min = −1.02, 1.05 ; ELDrel = −1.778 ; ELDabs = 6.429 eV
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Contour pl ELDrel Na8, Na148 i = −0.58

(δ, h0)min = −0.64, 0.98, N=8 −0.74, 1.12, N=148
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Contour pl ELDrel Na8, Na148 i = 0

N = 8: Min. at 0.54, 0.44. Max. at 0.06, 1.96

N = 148: Min. at 0.62, 0.44. Max. at −0.02, 1.96
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Contour pl ELDrel Na8, Na148 i = 1

N = 8: Min. at 1.1, 0.44. Max. at 0.14, 1.96

N = 148: Min. at 1.18, 0.44. Max. at 0.06, 1.96
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Contour pl ELDrel Na8, Na148 i = 2

N = 8: Min. at 1.34, 0.44. Max. at 0.14, 1.96

N = 148: Min. at 1.42, 0.44. Max. at 0.06, 1.96
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Equilibrium shapes
Equil. shapes of short oblate spheroidal caps (i < 0) are
less deformed than of long oblate spheroidal caps with the
same h0. On the contrary for prolate shapes (i ≥ 0).

i δ for h0 = 0.5 δ for h0 = 1 δ for h0 = 1.5

short cap hemispheroid long cap

−0.76 −0.53 −1.00 −0.62

−0.58 −0.16 −0.67 −0.50

0.00 0.52 0.00 −0.18

1.00 1.09 0.63 0.24

2.00 1.36 0.97 0.52

For i < 0 the minimum deformation energy occurs around
h0 = 1 (hemispheroidal shape)
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DEFORMED SINGLE
PARTICLE SPHEROIDAL
SHELL MODEL

In a small metalic cluster the conductions electrons are
confined. Consequently their quantum energy level
spectrum is discrete, in contrast to the continuous
spectrum of the infinite bulk.
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Spherical shell model

letter name l

s sharp 0

p principal 1

d diffuse 2

f fundamental 3

g 4

h 5

etc

Spectroscopic notation of clusters follows that of nu-
clei. The letters s, p, d, ... are associated to angular
momentum l.
The spectrum depends on the well shape. High l
states probe mainly the outer regions of the poten-
tial (centrifugal effects). The sensitivity to the details
of the potential is greatest for higher energy elec-
trons, because the electronic wavelengts are smaller
for those energy levels.
Jahn-Teller effect (studied for nuclei by Nilsson): for
open shell clusters (which are degenerate in their
spherical state), the total energy can be lowered by
distorting the cluster (lifting the degeneracy).
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Spheroidal harmonic oscillator I
The harmonic oscillator (HO) potential part of the

Clemenger-Nilsson model (K.L. Clemenger, Phys. Rev. B 32

(1985) 1359)

V =
MR2

0

2
(ω2

⊥ρ2+ω2
zz

2) =
Mω2

0R
2
0

2

[

ρ2

(

2 + δ

2 − δ

)2/3

+ z2

(

2 − δ

2 + δ

)4/3
]

The eigenvalues of the 3-dimensional Hamiltonian are

E = ~ω⊥(n⊥ + 1) + ~ωz

(

nz +
1

2

)

The main quantum number n = n⊥ + nz. In units of ~ω0

ǫ =
E

~ω0
=

2

(2 − δ)1/3(2 + δ)2/3

[

n +
3

2
+ δ

(

n⊥ − n

2
+

1

4

)]
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Spheroidal HO II
The single-particle shell gap (K.L. Clemenger, 1985):

~ω0 =
49 eV bohr2

r2
sN

1/3

[

1 +
t

rsN1/3

]−2

=
13.72 eV Å

2

rsR0

[

1 +
t

rsN1/3

]−2

rs is the Wigner-Seitz radius (atomic units), t is the electronic

spillout of the neutral cluster (we assume t = 0).

Levels are labeled by two quantum nbers (n, n⊥) — integers. For

every n = 0, 1, 2, ... one has n⊥ = 0, 1, 2, ..., n. Each level may

accomodate 2n⊥ + 2 particles. One has (n + 1)(n + 2) atoms in

a completely filled shell. The magic nbers for spherical shapes

(δ = 0) are (n + 1)(n + 2)(n + 3)/3 = 2, 8, 20, 40, 70, 112, 168...
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Spheroidal HO energy levels
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(spheroidal deformation)
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2

8

20

40

70

112

0, 0

1, 0

2, 0
1, 1

3, 0
2, 1

4, 0
3, 1
2, 2
5, 0
4, 1
3, 2

5, 1
4, 2
3, 3

5, 2
4, 3

5, 3
4, 4

Label: n, n⊥.
For δ > 0 (prolate shape)
at n⊥ = 0 the energy de-
creases with deformation,
except for n = 0, ǫ(n⊥ =

0) = [2n+3−δ(n−1/2)]/[(2−
δ)1/3(2 + δ)2/3]

When n⊥ = n it increases
ǫ(n⊥ = n) = [2n + 3 + δ(n+

1/2)]/[(2 − δ)1/3(2 + δ)2/3]

Remark a 2nd degeneracy
at δ = 2/3
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Magic nbers of spheroidal HO
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= - 0.8/3

= 0
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= 2/3

= 0.4

= 0.8/3

= 0

The spherical magic num-
bers
(n + 1)(n + 2)(n + 3)/3 are
2, 8, 20, 40, 70, 112, 168 ...

The magic numbers at the oblate spheroidal
superdeformed shape (δ = −2/3) are: 2, 6, 14, 26, 44, 68,
100, 140, ...
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Magic nbers of spheroidal HO II
Sphere (δ = 0): 2, 8, 20, 40, 70, 112, 168 ...
Oblate shapes:
δ = −0.8/3 2, 8, 18, 20, 34, 38, 58, 64, 92, 100, 136, 148,
δ = −0.4 2, 6, 8, 14, 18, 28, 34, 48, 58, 76, 90, 114, 132,
δ = −2/3 2, 6, 14, 26, 44, 68, 100, 140,
δ = −1 2, 6, 12, 22, 36, 54, 78, 108, 144,
Prolate shapes:
δ = 0.8/3 2, 8, 20, 22, 42, 46, 76, 82, 124, 134,
δ = 0.4 2, 8, 10, 22, 26, 46, 54, 66, 84, 96, 114, 138, 156,
δ = 2/3 2, 4, 10, 16, 28, 40, 60, 80, 110, 140,
δ = 1 4, 12, 18, 24, 36, 48, 60, 80, 100, 120, 150,
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DEFORMED SINGLE
PARTICLE HEMISPHEROIDAL
SHELL MODEL
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New (hemispheroidal) HO

0
0

0

z0=0.5

z1=1.5

z2=2.5

z3=3.5

z4=4.5

z5=5.5

0
0

0

nz=1

nz=3

nz=5
Axially-symmetric 3dim
HO HΨ = EΨ

H = T + Vρ(ρ) + Vz(z)

Ψ = ψm
nr

(η)Φm(ϕ)Znz
(ξ)

En = ~ω⊥(n⊥ + 1) +

~ωz(nz + 1/2)

The main quantum number n = n⊥ + nz = 0, 1, 2, 3, ...n

Znz
(ξ) = Nnz

e−ξ2/2Hnz
(ξ) ξ = zR0/

√

~/Mωz - dim.less

Nnz
- ortonorm.constant Hermite polynomials with par-

ity (−1)nz meaning H2nz
(−ξ) = H2nz

(ξ) and H2nz+1(−ξ) =

−H2nz+1(ξ). For hemispheroidal HO Vz(0) → ∞. One

should have Znz
(ξ = 0) = 0. Only odd nz values remain.
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Hemispheroidal HO en. levels
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7, 0
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8, 1
7, 2
6, 3
5, 4

8, 3
7, 4
6, 5

8, 5
7, 6

At every pair (n, n⊥), la-
beling an energy level,
only those values are
acceptable which lead
to nz = n − n⊥ ≥ 1 —
odd numbers.
The hemispherical
magic numbers are
equal to those obtained
at the oblate spheroidal
superdeformed shape,
δ = −2/3 i.e. 2, 6, 14,
26, 44, 68, 100, 140, ...
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Magic nbers of hemispher. HO
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= 0 The contrib. to the hemispher-

ical magic numbers of shells

with:

(1) odd n: (n + 1)2/2,

(2) even n: n(n + 2)/2.

Semi-spherical m.n. are iden-

tical to those obtained at the

oblate spheroidal superde-

formed shape (δ = −2/3: 2,

6, 14, 26, 44, 68, 100, 140, ...)
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Magic nbers of hemisph. HO II
Semi-sphere (δ = 0): 2, 6, 14, 26, 44, 68, 100, 140, ...
Oblate hemispheroidal shapes:
δ = −0.8/3 2, 6, 12, 22, 26, 36, 42, 56, 64, 82, 92, 114,
126, 154,
δ = −0.4 2, 6, 12, 22, 36, 54, 78, 108, 144,
δ = −2/3 2, 6, 12, 20, 32, 48, 68, 92, 122, 158,
δ = −1 2, 6, 20, 30, 42, 58, 78, 102, 130,
Prolate hemispheroidal shapes:
δ = 0.8/3 2, 6, 8, 14, 18, 28, 34, 48, 58, 76, 90, 114, 132,
δ = 0.4 2, 8, 18, 20, 34, 38, 50, 58, 64, 80, 92, 100,
δ = 2/3 2, 8, 20, 40, 70, 112, 168,
δ = 1 2, 8, 10, 14, 22, 26, 46, 54, 66, 84, 96, 114, 138,
156,
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Comparison of degeneracies
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Striking: magic nbers at the prolate superdef. shape (δ = 2/3)

are identical to those obtained at the spherical shape

(n + 1)(n + 2)(n + 3)/3 = 2, 8, 20, 40, 70, 112, 168 ...
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Influence of l2 term (I)

H = −~
2∆

2M
+ Vosc − ~ω0U(l2 − 〈l2〉n)

Vosc =
Mω2

0
R2

0

2

(

ρ2

a2 + z2

c2

)

U = 0.04 and 〈l2〉n = n(n + 3)/2

l = ∇Vosc × p̂ l2 = 0.5(l+l− + l−l+) + l2z

ǫn =
En

~ω0
=

n⊥ + 1

a
+

nz + 1/2

c
− Um2

4a4
+

Un(n + 3)

2

|m| = n⊥ − 2i i = 0, 1, ... (n⊥ − 1)/2 for odd n⊥ or (n⊥ − 2)/2

for even n⊥.

The possible nondiagonal terms coming from (l̂+ l̂− + l̂−l̂+)/2

are not present since their contribution vanishes (nz odd).

|m| = (n⊥ − 2i) with i = 0, 1, ... U — strength of interaction
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Influence of l2 term (II)
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For lower levels (say up to 10

closed shells), the sequence of the

magic numbers at the maximum

degeneracy, δ = 2/3, remain the

same: N = 2, 8, 20, 40, 70, 112, 168.

At very large oblate deformations,

leading to “pan-cake” shapes ap-

proximating a 2D situation, one of

the magic number is 6, in agree-

ment with the experiments of Chiu

et al.

Ya-Ping Chiu et al., Magic Numbers of Atoms in Surface-

Supported Planar Clusters, Phys. Rev. Lett. 97 (2006) 165504.
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MICROSCOPIC SHELL AND
PAIRING CORRECTIONS
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Shell corrections (I)
The average potential felt by one atom can be either of finite depth (e.g.

Woods-Saxon) or of infinite depth (e.g. harmonic osc. potential,

Clemenger-Nilsson potential, or the two-center shell model potential).

We know the doubly degenerate dicrete energy levelsǫi = Ei/~ω0
0 in

units of~ω0
0 ≈ (13.72 eV Å

2
)/(r2

sN
1/3), arranged in order of

increasing energy.

The smoothed-level distribution density is obtained by averaging the

actual distribution over a finite energy intervalΓ = γ~ω0
0 , with γ ≃ 1,

g̃(ǫ) =

{∑nm

i=1[2.1875 + yi(yi(1.75 − yi/6) − 4.375)]e−yi} (1.77245385γ)−1

wherey = x2 = [(ǫ − ǫi)/γ]2. The summation is performed up to the

levelnm fulfilling the condition|xi| ≥ 3.
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Shell corrections (II)
The Fermi energy,̃λ, of this distribution is given by

N = 2
∫ λ̃
−∞ g̃(ǫ)dǫ

leading to a non-linear equation iñλ, solved numerically.

The total energy of the uniform level distribution

ũ = Ũ/~ω0
0 = 2

∫ λ̃
−∞ g̃(ǫ)ǫdǫ

In units of~ω0
0 the shell corrections are calculated for each

deformationδ

δu(n, δ) =
n

∑

i=1

2ǫi(δ) − ũ(n, δ)

n = N/2 particles.
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Pairing corrections (I)
For atomic clusters there is no pairing force. We only consider pairing

corrections for a technical reason: to obtain smoothed microscopic

corrections.

Doubly degenerate levels{ǫi} in units of~ω0
0. N/2 levels are occupied.

n levels below &n′ above Fermi energy contribute to pairing,

n = n′ = Ωg̃s/2. Cutoff energy,Ω ≃ 1 ≫ ∆̃ = 1.3416/(
√

N~ω0
0)

The gap∆ and Fermi energyλ are solutions of the BCS eqs:

0 =

kf
∑

ki

ǫk − λ
√

(ǫk − λ)2 + ∆2
;

2

G
=

kf
∑

ki

1
√

(ǫk − λ)2 + ∆2

ki = Z/2 − n + 1, kf = Z/2 + n′, 2
G ≃ 2g̃(λ̃) ln

(

2Ω
∆̃

)

.
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Bardeen, Cooper, Schrieffer

John Bardeen, Leon N. Cooper, John R. Schrieffer

Nobel Prize 1972: theory of superconductivity.

quasiparticle — a free particle (combination of a particle and its pairing interaction). The
same spin (1/2) as the particle.
Cooper showed that an arbitrarily small attraction between electrons in a metal can
cause a paired state of electrons to have a lower energy than the Fermi energy, which
implies that the pair is bound. In normal superconductors, this attraction is due to the
electron-phonon interaction. A Cooper pair is a boson. The tendency for all the Cooper
pairs in a body to condense into the same ground state is responsible for the
superconductivity.
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Pairing corrections (II)
As a consequence of the pairing correlation, the levels below the Fermi

energy are only partially filled, while those above the Fermienergy are

partially empty. Occup. probab. by a quasiparticle (uk) or hole (vk)

v2
k = [1 − (ǫk − λ)/Ek] /2; u2

k = 1 − v2
k. Quasip. energy

Eν =
√

(ǫν − λ)2 + ∆2.

The pairing correctionδp = p − p̃, represents the difference between

the pairing correlation energies for the discrete level distribution

p =
∑kf

k=ki
2v2

kǫk − 2
∑Z/2

k=ki
ǫk − ∆2

G and for the continuous level

distributionp̃ = −(g̃∆̃2)/2 = −(g̃s∆̃2)/4. Compared to shell

correction, the pairing correction is out of phase and smaller, hence it

has a smoothing effect.
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Shell and pairing corrections
Plateau condition for N = 90, δ = −2/3. We choose
γ = 1.2
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RESULTS OF MACROSCOPIC-
MICROSCOPIC
CALCULATIONS FOR
HEMISPHEROIDAL CLUSTERS
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M-MA: hemisph. Na clusters
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M-MA hemisph. Na148 cluster
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Shell corrections hemispheroid

0
1 50

100
150

-1
0
1
2

 δ
N

 δ
U

 (
eV

)

25

50

75

100

125

150

-0.5 0 0.5 1  δ

N

PES Contour plot

Special Lecture MesoBioNano Sci. FIAS, December 5, 2008 – p.75/83



Dorin N. POENARU

Pairing corr. hemispheroid

In a δ,N plane valleys and ridges are progressing
parabolically
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Shell+pairing corr. hemisph.

0
1 50

100
150

-1
0
1
2

 δ
N

 δ
E

 (
eV

)

25

50

75

100

125

150

-0.5 0 0.5 1  δ

N

PES Contour plot

Special Lecture MesoBioNano Sci. FIAS, December 5, 2008 – p.77/83



Dorin N. POENARU

Total M-M rel. def. energy

Er
def = ELD − E0

LD + δE
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CONCLUSIONS I

• Neutral, free hemispheroidal clusters were investigated, as

a 1st approx. to study cluster deposition on a surface

• They allow to obtain analytical results: surface, curvature

deformation energy, shell model energies. Easy to interpret

and short computer running time

• Within the LDM the most stable shape is a superdeformed

prolate hemispheroid
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CONCLUSIONS II
• A new hemispheroidal harmonic oscillator was derived.

Z(z) component of wave function has negative parity

• Its hemispherical (δ = 0) magic numbers are identical with

those obtained at the oblate spheroidal superdeformed

shape: 2, 6, 14, 26, 44, 68, 100, 140, ...

• Maximum degeneracy at superdeformed (δ = 2/3) prolate

shape. Magic numbers identical with those of the spherical

shape: 2, 8, 20, 40, 70, 112, 168 ...

• Pairing may be used to obtain smoother microscopic

corrections

• In a δ,N plane shell corr., pairing corr. and total def. energy

valleys and ridges are progressing parabolically

Special Lecture MesoBioNano Sci. FIAS, December 5, 2008 – p.80/83



Dorin N. POENARU

CONCLUSIONS III

• Interaction with the substrate was simulated by multiplying

the surface tension of the base with a real number

i = interaction factor
• Equilibrium shapes are

• oblate hyperdeformed hemispheroids (δ = −1, a/c = 3) when i = −0.76

• superdeformed oblate semi-spheroid (δ = −0.68, a/c = 2) when i = −0.58

• hemisphere (δ = 0, c/a = 1) when i = 0

• superdeformed prolate semi-spheroid (δ = 0.63, c/a = 1.9) when i = 1

• prolate hyperdeformed hemispheroids (δ = 0.97, c/a = 2.9) when i = 2

• The LDM was also applied to short and long spheroidal

caps.
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